
Humanoids Learning who are Teammates and who
are Opponents

Vladimir Estivill-Castro
School of Information and

Communication Technology
Griffith University

Nathan, Brisbane 4111
Australia

Email: v.estivill-castro@griffith.edu.au

Jordi Radev
Departament de Tecnologies de la Informació i

les Comunicacions
Universitat Pompeu Fabra

Barcelona 08018
Spain

Email: jordi.radev@gmail.com

Abstract—RoboCup aims to progressively advance the re-
search challenges in robotics by presenting a soccer tournament
played by robots. One of the main aspects that shall fade is the
need for pre-defined color coding; specially on what humanoids
wear. However, most colors have rarely been modified over the
years of the competition. The field remains green with white
lines on it, the colors of the teams are predefined and the
ball continues to have no pattern and is only orange. If colors
of objects are no longer predetermined, a new parameter is
needed for object recognition, and we propose to use shapes.
However, computer-vision techniques for shape recognition are
much more CPU-intensive than color recognition and perhaps
they are unaffordable during the game. Our proposal here
consists of identifying objects by their shape and extracting the
colors from within these shapes. We identify the objects on the
basis of their shape and learn autonomously the colors of the
recognized objects. The chosen shape recognition algorithm is the
Histogram of Oriented Gradients. This method has been proved
to be capable to recognize complex objects and is widely used
for pedestrian recognition. The complex objects we recognize are
other humanoid robots (in particular Naos), similar in complexity
for their anthropomorphic shape but less variable than human
beings. This enables full learning of the environment colors in
less than 1 minute on board of a Nao.

I. INTRODUCTION

Once we place a humanoid robot in an environment, there
would be more to come, and the natural question is, weather
one humanoid robot would recognize the other. This is already
the scenario at RoboCup in the humanoid leagues. The teams
are composed of several robots; however, the competition rules
still allow for recognition of teammates and opponents on the
pre-defined color-coding specified by the competition’s rules.
This is significantly different from the spirit of the research
at RoboCup where the ultimate aim is to enable robots to
play alongside humans. This paper aims at revising the need
for a fixed color-coded environment with predefined colors for
objects like the ball, the field, the lines, the goals and also
the teams’ uniforms. The games played by humans do define
that the teams wear different colors, but long are gone the
days of black-and-white TV that demanded a dark top for one
team and a clear top for the other; today’s human soccer has
even allowed the referee to use several colours, the ball can
have colors and patterns and although most fields use white
lines, white post and green grass, some games in artificial turf

make surface color quite different. Playing at night and indoor
soccer (fut-sal) allows even more variations (for the posts and
the playing surface).

We study the Standard Platform League that uses Alder-
baran’s Nao. We suggest that the results reported in this paper
are sufficient to remove the color constraints and enable

1) different team shirts (that is, teams should be able to
wear a color of their choice),

2) allow different types of fields (different colors for
lines and playing surface, different colors for balls,
as well as goal posts).

In less than 1 minute of preparation, our automatic procedure
can capture (learn) the environment’s colors. Thus, teams can
be introduced to the environment and their opponents before a
match and using our approach, efficiently construct classifiers
to segment the images the robot’s will face in the up-coming
match. Naturally, the technique could also run at occasional
non-CPU intensive moments during a match (in the spirit of a
background process amortizing its cost over time) and improve
the learning, but we leave this aspect for further work.

We achieve this by using shape-based recognition. We can
place the robot and the objects (mainly the ball, teammates
and opponents) in introductory positions. We work in gray-
scale images and progressively our approach learns the colors
of the environment. The contrast of the surface near the central
circle enables recognition of the color of the field-lines and the
field itself, while the round shape enables the recognition of the
ball. Techniques for this level are well-known in the computer
vision literature, we will be using the Hough transform and
fast clustering methods like k-means. Still, careful tailoring
is used to actually obtain reliable samples from which to
learn. But to recognize other humanoid robots we need to
find them efficiently. the Histogram of Oriented Gradients
(HOG) [5] is a solid technique widely used to recognize
people in environments, and we demonstrate here it is effective
in recognizing humanoids. The HOG uses as a classifiers
Support Vector Machines. Once robots are found, we need to
recognize their torso, in order to find samples of the team-shirt
color. In our approach we will also be using machine learning
algorithms. Nevertheless, we achieve the complete learning of
a new color-coded environment completely on board of the
Nao in less than 1 minute.

behnke
Schreibmaschine
In Proceedings of 8th Workshop on Humanoid Soccer Robots
13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta, GA, 2013.



II. THE CLASSIFIERS

The type of classifiers that we will learn are very efficient.
In the literature of machine learning [1] they are known as
decision lists. Decision lists can be learned using the PART
algorithm [1]. We introduce them here briefly as they constitute
the aim of the process of discovering the environment’s colors
and encode the representation of what is learned. Typically,
the color attribute for a pixel in image is provided by three
components labeled Y , U and V in a range [0,precision]
(which is typically [0,255] when these components are one
byte). The basic components of a decision list classifiers
are characteristic functions defined by three intervals and a
color class; one interval for each component. This elementary
classifier can be encoded by its 3 intervals [minY ,maxY ],
[minU ,maxU ], [minV ,maxV ] (or alternatively, by a set of
6 values {minY ,maxY ,minU ,maxU ,minV ,maxV }) and the
color class identifier. The semantics of the elementary classifier
is simple. If a pixel p = (pY , pU , pV ) satisfies (minY ≤ pY ≤
maxY ) ∧ minU ≤ pU ≤ maxU ∧ (minV ≤ pV ≤ maxV ),
then the pixel p is assigned the color id of this elementary
classifier; otherwise is left as unknown.

The 3 intervals of such an elementary classifier can also
be encoded very succinctly in a 3 Boolean arrays, each array
being the characteristic function that fires the rule. The Y array
is such that Y [i] = (minY ≤ i ≤ maxY ), for i = 0, . . . ,
precision. Similarly, U [i] = (minU ≤ i ≤ maxU ), for
i = 0, . . . , precision and V [i] = (minV ≤ i ≤ maxV ),
for i = 0, . . . , precision.

In a programming language like C++, then the elemen-
tary rule knows the color of the pixel p = (pY , pU , pV )
when Y[p[y]] & U[p[u]] & V[p[v]] evaluates to
true. Note that this is the bit-wise and operation.

Decision lists are lists of these elementary classifiers. On
a given pixel, the first elementary classifier is tested, and if it
declares a color for the pixel, the ensemble of classifiers takes
such decision as the color of the pixel; otherwise, the next
rule is evaluated down the list. Once an elementary classifier
determines it knows the color, the ensemble takes this as the
decision. The ensemble may decide it can not determine a color
if the list is exhausted without a decision. Although this may
seem a complicated algorithm, it can be implemented in an
extremely efficient way. A decision list of depth 32 elementary
rules can be implemented in 3 integer arrays (with indexes
in [0,precision] if the memory word for an integer is 32
bits) and an ensemble of 64 elementary rules is now quite
feasible (with the integer representations of 64 bits). The three
arrays are also Y, U and V. However, the characteristic function
described early (the Boolean array) for one elementary rule is
encoded in one bit position. The first rule in the ensemble goes
in the least significant bit, the second rule in the next bit, and
so on. The following code implement the algorithm in C++.

color= Y[p[y]] & U[p[u]] & V[p[v]];
color_id=0;
while (0 == color & 1)

{ color>>=1; color_id++;};

Decision list achieve very succinct representation and their
classification accuracy is equal or better than decision trees,
neural networks or support vector machines. They do not

Fig. 1. A typical image used to learn the color of the surface of play, the
color of line markings and the color of the ball.

require integer arithmetic, multiplication or any other CPU-
costly operation. They are several orders of magnitude faster
at color-segmenting an image [2].

Learning a decision list is a classical supervised learning
setting, where we are to supply a large set of pixels for which
the color is already known. The decision list learning algorithm
can learn a two-class scenario (for example, it is a yellow
pixel versus it is not a yellow pixel) or a classifier for several
classes (lets say the colors of the environment). In fact, it is
quite feasible to learn several classifiers, a generic multi-class
classifier that is globally used during the match to analyze
the image and find regions of interest. While later, specialized
classifiers for the color of the ball are used in the region of
the ball. The vision pipeline can select also a classifier based
on context, for when the ball is close as opposed to when it is
far. Suffice to say that constructing these classifiers becomes
the realm of supervised learning. Thus the challenge is to find
supervised examples, without human involvement acting as the
supervisor.

III. THE ANALYSIS OF THE ENVIRONMENT

The first step of the over-all behavior that learns all the
colors of the soccer match in the Standard Platform League is
what we call the environment analysis (the color of the playing
surface, the color of the line marking on the playing surface
and the color of the ball).

The robot does need assistance in that is to be placed near
inside the center circle or a position near line markings (how-
ever, we can see that actually this is just for the convenience
of doing everything in less than 1-minute). The same could be
achieved from any position in the side of the field, as the first
two colors learned are the playing surface colors and the lines.
Once this colors are learned, the robot can find and navigate
to the center circle or any other place for later meeting other
humanoids or have a good position where seeing most of the
goal is to be expected. A typical image used to learn the line
markings, the color of the playing surface and the color of the
ball is shown in Fig. 1

Also, for the process to complete in one minute, a ball
is placed close to the robot. The robot executes a behavior
by which it looks down and grabs images. The images are
processed in two phases as follows. In the first phase, images
are converted to gray-scale, they pass a smoothing filter



Fig. 2. A typical result of the Hough transform for finding circles of size
similar to an expected nearby ball.

(actually the method works even if the playing surface has
texture, like artificial grass or carpet with spots of several
colors). A Hough transform to find circles (of the size of
balls) is applied followed by circle clustering. Fig. 2 shows
the typical result of the Hough transform. The clustering is
on the circles found across several frames. Typically, sightings
of a ball create circles very close to each other (occasionally
a ball is missed and occasionally a false positive will occur).
Nevertheless, once several consistent (very similar size and
placement) circles and radius are found, this is recognized as
average position and average size of the ball. For extracting the
ball pixels and avoid pixels that are not belonging to the ball in
case of a bigger detected radius than the real one a clustering
procedure is ran starting from the center of the circle. On each
iteration of the procedure an average of the components of the
cluster pixels is calculated and all the neighbors of the already
clustered pixels that are closer than a predefined constant are
added to the cluster. The value of this predefined constant must
be carefully chosen because in case it is too small only few
pixels will be taken and many pixels that belong to the ball
would be thrown away, on the other hand if the value is too
large the cluster would expand around all the ball taking all
the reflections as ball colors, which could ruin the accuracy of
the classifier. This procedure keeps iterating until it converges,
i.e. there is an iteration where no pixel is added to the cluster,
then the first phase is over.

In the second phase, everything above a horizon calculation
(about the top half of the image) is ignored and pixels are
separated into two classes. Those that belong to a circle
slightly bigger than the expected size of the ball versus pixels
outside the circle. Those pixels outside the circle are clustered
by their color into two clusters by k-means, since these are
laying-surface pixels or line-marking pixels. They then become
training instances for the decision-list classifier about the line-
markings and the playing surface. Fig. 3 shows the input pixels
into the clustering with k-means, and the result of k-means
with k = 2 on these pixels (which separates mainly into
training samples for line-markings and training samples for
the color of the surface of play).

Fig. 4 shows the flow diagram for the environment analysis.
The procedure starts by enlarging the cluster of pixels of
the color of interest and we present it here as enlarging the
blob/patch of a color to something close to its boundary is
also used to recognize the team’s colors on the shirts they

(a) Sample pixels

(b) Clustering result

Fig. 3. The result of clustering into two clusters pixels below the horizon
that are not in the circle of the ball (plus some margin).

Capture(picture(
looking(down(

Convert(to(
gray(scale(

Smooth(

Use(Hough(Circle(
Transform(

Cluster(circles(

enough(circles?(

Delete(above(
horizon(

Separate(pixels(
outside(selected(
circles(and(their(

margin(

Cluster(by(
components(

similitude(and(build(
training(samples(of(

surface(ball(

Cluster(by(kAmeans(
(k=2)(and(build(

training(samples(of(
surface(and(line(

markings(

Fig. 4. The process of learning the SPL playing environment.

wear. Fig. 5 shows the flow diagram of the procedure to grow
a blob of a certain color. Figure 6 Illustrates the progress of
the algorithm that enlarges the set of samples to be forwarded
for training as pixels of the color patch for the ball.

IV. LEARNING THE COLORS OTHER HUMANOIDS WEAR

We now describe the procedure to find other humanoids
in the field, and then use the findings to obtain samples of
their team shirt in order to construct decision list classifiers
for recognizing teammates and opponents. Again, the process
here is efficient, but not efficient enough to run for every frame
during game play. The purpose of learning the team shirts



Calculate(average(
blob(color(

Group(similar(
neighbors(

Are(there(more(
neighbors?(

Add(neighbor(to(
cluster(

Has(the(blob(
been(

modified?(

YES(

YES(

(
Is(the(current((
neighbor(color((
similar(to(the((

blob?(
(

END(

NO(

YES(

NO(

NO(

Fig. 5. The region-growing process that enlarges the number of samples of
a color patch or blob.

(a) One iteration,
9 pixels

(b) 13 iterations,
579 pixels

(c) 76 iterations,
2,546 pixels

Fig. 6. The enlarging of the set of pixels that are recognized as pixels of the
ball color.

colors is that, from there on the recognition of teammates and
opponents during the match can be performed every frame
using color-segmentation. But again, if desired, the process
described here can be run on spare CPU cycles during the
game to improve the classifiers.

For this part two Naos are placed in front of the Nao that
is learning, one closer than the other. The closer Nao can be
selected as a player of the same team and the farther Nao will
then be recognized as the opponent.

As we announced in the introduction, the first fundamental
technique used here is the Histogram of Gradients (HOG)
which uses support vector machines as the classifier after
features are extracted on images. The Histogram of Gradients
generates feature descriptors (similar to the popular SIFT
algorithm); however, the HOG technique has been found to
be more reliable in identifying human (people) in images [3].
In fact, the HOG technique has been used on board of robots to
follow a human [4]. Our work here demonstrates that the HOG
technique is also very effective to locate where in an image is a
humanoid robot. The HOG creates a training set for the support
vector machine, and the support vector machine performs the
actual identification of a box that frames the object of interest
in an image.

The fundamental steps of HOG are as follows.

1) The image is transformed to gray-scale.
2) The image is divided into cells.
3) Gradients for each direction within the cells are

quantified
4) Cells are grouped into blocks

Fig. 7. HOG Technique localizes the humanoid robot on the image by its
shape.

5) A window (box) is defined for detection.

Using the full resolution of the Nao camera (1280×960 pixels)
the process took around 11 seconds for each image processing,
but we found that changing the resolution to VGA (640× 480
pixels) the time was improved (down to 3 seconds) and the
accuracy remained the same. The best parameters we found to
achieve the recognition of Nao robots from another Nao are
as follows.

1) The window size was set to 64× 128 pixels.
2) The block size was set to 16× 16 pixels.
3) The block stride was set to 8 pixels in each dimension

(left to right of the image and top to down).
4) The cell size was set to 8× 8 pixels.
5) The number of bins in the histogram was set to 9.

Thus, the feature vector dimension of a training sample is as
follows.

• There are 4 positions that a block of 16 pixels fits
horizontally along the windows of 64 pixels, and the
stride puts another 3 blocks (each of these in between
the others).

• There are 8 positions that a block of 16 pixels fits
vertically along the windows of 128 pixels, and the
stride puts another 7 blocks (each of these in between
the others).

• There are 4 cells of size 8 × 8 in each block of size
16× 16.

• The gradients are placed in a histogram of 9 bins.

In total, the dimension is

(4 + 3)× (8 + 7)× (4× 9) = 3, 780.

To create a training set for the shape-based detection of
Naos using HOG and support vector machines we used 512 as
positive examples images where we presented a 64×128 box of
pixels framing a Nao. However, these were in fact 256 images
as we doubled the samples by flipping the images horizontally.



TABLE I. RESULTS OF 6-FOLD CROSS VALIDATION TO ASSES
ACCURACY OF HUMANOID ROBOT DETECTION.

True positives 452
False positives 3
True negatives 2769
False negatives 60
Average precision 99.33%
Average recall 88.26%

(a) One iteration,
9 pixels

(b) 18 iteration,
995 pixels

(c) 53 iterations,
137 pixels

Fig. 8. The progression of adding pixels that become training samples for
the color of the uniform of nearest robot.

We also presented 2,772 framing boxes as negative examples
taken randomly from images that were flipped vertically in
order to avoid taking a Nao image as negative example by
mistake. Once the training set is used to build a classifier the
same training set is tested with the classifier and all the false
positives are added as negative instances, then a new classifier
is trained and this one is the one used for detecting Naos. This
is the same procedure followed by the original HOG paper [5].
This setting achieved high accuracy in recognizing other Naos.

We evaluated the accuracy of classification in over 3,000
images by k-fold cross validation with k = 6. Table I shows
that our accuracy is above 99% and recall is 9 out of 10.
Once both Naos are discovered in the image, the procedure
to recognize a blob of a color to create the sample set for
constructing decision list classifiers is as described in the
previous section. Fig. 8 shows the collection of pixels for
the shirt of the nearest robot. Analogously, Fig. 9 shows the
gathering of pixels for the far robot.

(a) One iteration,
9 pixels

(b) 18 iteration,
885 pixels

(c) 108 iterations,
2,679 pixels

Fig. 9. The progression of gathering pixels that will become samples for
learning the color of the uniform of the far robot.

TABLE II. RESULTS OF 6-FOLD CROSS VALIDATION TO ASSES
ACCURACY OF GOAL CORNER DETECTION.

True positives 187
False positives 61
True negatives 64,406
False negatives 41
Average precision 75.55%
Average recall 82.57%

V. LEARNING THE COLOR OF GOAL-POSTS.

The final procedure is the recognition of goals in order to
learn the color of the posts that make the goal. While there
are several algorithms to recognize lines (RANSACK, or the
Hough Transform [3, Chpater 4]), we found that it was in fact
better to recognize the corner shapes in an image that happen
when a post meets the crossbar of a goal. And also, despite that
there are algorithms dedicate to find corners (like the Harris
detector [3, Chaper 4]) we found that the HOG technique again
was more effective (in the trade-off of accuracy vs learning
time). However, in this case, the shapes to be located in the
image are less complex (we are after the inverse-L-shape of
the post meeting the cross-bar, and not a kneeling, walking or
standing Nao). Thus, the parameters for the HOG are simpler.

1) The framing-window size is 16× 16.
2) The block size is 8× 8.
3) The block stride is 4 in the horizontal direction and

also in the vertical direction.
4) The cell size 4× 4.
5) The number of bins for the histogram is 9.

Thus, the feature vectors in this case are much smaller. The
dimension is (2 + 1)× (2 + 1)× 4× 9 = 324.

We train the corresponding support vector machine with
228 positive examples provided (from only 114 images as each
is flipped horizontally to create a symmetric positive example).
The number of negative examples is 64,467 and they have been
picked by framing randomly parts of images and flipping them
vertically to avoid getting a goal corner by mistake. Table II
shows that our accuracy is above 75% and recall is 8 out of
10.

Again, the blog/patch forming algorithm of Section III
is used to enlarge the goal-post pixel samples to use in the
training sets of decision-list classifiers.

VI. INTEGRATION AND IMPLEMENTATION

The implementation of the complete procedure is cul-
minated by the construction of a decision-list classifier that
recognizes all the colors for which sample pixels have been
obtained. We highlight that the actual execution of the PART-
learning algorithm [6] occurs on board of the Nao1.

However, some house-keeping needs to be performed
before the decision-list classifier is invoked. This includes
merging all the samples of the different colors into one large
training set, and most importantly, balancing the classes. It
is rather common that several thousands of pixels labeled as
playing surface color are obtained, while only a few hundred

1We used Alderbaran’s provision of a virtual machine, installed Java and
used the Weka package to place the learning procedure on the Nao itself



Fig. 10. A set of different shirts with different colors which were learned
successfully. The two surfaces in this image were also tested as playing
surfaces and the learning was successful.

samples are obtained for the post, and even less for important
objects like the ball or the jersey’s of the teammates and the
opponents. We used the Weka algorithm for class balancing.
The last step is to actually put in place the decision list
classifier into the vision module and let the robot use it
in actual play (chasing the ball, localizing, and recognizing
teammates and opponents).

The results of this process is shown on a video (http:
//youtu.be/DEMaRopZSrQ) recorded at the RoboCup-2013
venue and the colors learned are the colors of the competition.
Robots are located at different distances, and in under a minute,
colors are learned for all objects in order to recognize them
using color segmentation by decision lists.

VII. CONCLUSION

The results are remarkable from a qualitative perspective
therefore it has been proved to be possible to learn the
colors related to a soccer match in less than a minute. Note
that earlier, the HOG was considered infeasible for the Nao
robots [7]; thus, the approach took advantage of the colors
team-marker belt, requiring previous knowledge of team col-
ors [7]. Similarly, knowledge that lines and robots are white
is used to find lines, and to find robots in those white patches
that do not pass the test as lines [9]. The main classifier in
such proposal [9] is artificial neural networks. One virtue of
this method is that estimations of distance to the other robot
are obtained [9]. We do not require the lines to be white, but
we do learn from images with a Nao.

We tested the environment analysis phase on many playing
surfaces, with different balls and with different team shirts
and the method proved to be effective. Fig. 10 shows different
shirts/jerseys and two other playing surfaces that were success-
fully learned. Fig. 11 shows different colored balls that were
also successfully learned.

The smoothing contributed remarkably well at detecting
separately the colors that constitute the surface from the color
of the lines and the ball. It even achieved good results on non-
homogeneous floors and helped the Hough transform to detect
the ball more accurately.

The recognition of other Naos is also very robust, detecting

Fig. 11. A set of different balls with different colors which were learned
successfully.

Naos in different position, like kneeling or walking as the
training set included Naos in several different positions.

The process has proved to be capable to be executed in less
than a minute with satisfactory results being executed entirely
on the Nao autonomously.

We are aware that a process to avoid calibration and use a
shape-vision approach to vision during the game exists [8].

ACKNOWLEDGMENT

The authors would like to thank all members of the MiPal
RoboCup Team and the anonymous referees for many helpful
remarks.

REFERENCES

[1] I. Witten and E. Frank, Data Mining — Practical Machine Learning
Tools and Technologies with JAVA implementations. San Mateo, CA:
Morgan Kaufmann Publishers, 2000.

[2] V. Estivill-Castro and N. Lovell, “Improved object recognition - the
robocup 4-legged league,” in Intelligent Data Engineering and Auto-
mated Learning, 4th International Conference, IDEAL 2003, ser. Lecture
Notes in Computer Science, J. Liu, Y. ming Cheung, and H. Yin, Eds.,
vol. 2690. Hong Kong, China: Springer, March 21-23 2003, pp. 1123–
1130.

[3] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
Autonomous Mobile Robots, 2nd ed. Cambridge, MA: MIT Press, 2011.

[4] W. Pairo, J. Ruiz-del Solar, R. Verschae, M. Correa, and P. Loncomilla,
“Person following by mobile robots: analysis of visual and range traking
methods and technologies,” in Proceedings of 17th RoboCup Interna-
tional Symposium, ser. Lecture Notes in Computer Science. Eindhoven,
Netherlands: Springer, June 2013, to appear.

[5] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2005). San Diego, CA, USA: IEEE
Computer Society, 20-26 June 2005, pp. 886–893.

[6] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,” SIGKDD
Explorations, vol. 11, no. 1, pp. 10–18, 2009.

[7] A. Fabisch, T. Laue, and T. Röfer, “Robot recognition and modeling in
the in the roboCup standard plarform league,” in 5th Workshop on Hu-
manoid Soccer Robots at Humanoids, 2010, http://www.humanoidsoccer.
org/ws10/program.html.

[8] T. Reinhardt, “Kalibrierungsfreie bildverarbeitungsalgorithmen zur
echtzeitfähigen objekterkennung im roboterfußball,” 2011, in German
http://thomas-reinhardt.de/Vision/.

[9] S. Metzler, M. Nieuwenhuisen, and S. Behnke, “Learning visual obstacle
detection using color histogram features,” in RoboCup 2011: Robot Soc-
cer World Cup XV —papers from the 15th Annual RoboCup International
Symposium, ser. Lecture Notes in Computer Science, T. Röfer, N. M.
Mayer, J. Savage, and U. Saranli, Eds., vol. 7416. Istanbul, Turkey:
Springer, July] 2011, pp. 149–161.


