
Comparison of Obstacle Avoidance Behaviors for a
Humanoid Robot in Real and Simulated Environments

Stephen G. McGill∗, Yida Zhang∗, Larry Vadakedathu∗,
Aditya Sreekumar∗, Seung-Joon Yi∗, and Daniel D. Lee∗

Abstract—RoboCup soccer is still host to frequent collisions
between robots that lead to unsavory gameplan that is typically
not allowed in human soccer. In the Standard Platform league
where ultrasonic sensors are employed, these collisions are
forbidden, but there is still leniency in the Humanoid League.
Additionally, advanced behaviors, such as dribbling, require
robust obstacle avoidance strategies to keep possession of the
ball. Challenges in the RoboCup competition seek to demon-
strate ways to dribble around static obstacles, but it can be
hard to replicate conditions for the sake of iteratively tuning
robot behavior. We present a method for evaluating policies
in simulation and on the real robot for obstacle avoidance
behaviors.

Keywords : Obstacle avoidance, robot soccer

I. INTRODUCTION

The RoboCup humanoid soccer competition strives to
produce humanoid robots that will someday be able to
play soccer against the human soccer team that wins the
World Cup. To accomplish this, rules in the league gradually
resemble more closely those of FIFA. One of the outstand-
ing issues, however, is that contact between players is not
penalized much.

In the Standard Platform League, contact is already
banned, but in the Humanoid League, inevitably, this le-
niency will be removed. It is important to have a frame-
work for preventing contact for current Standard Platform
teams and for future Humanoid League teams. Teams have
already demonstrated obstacle avoidance and dribbling in the
obstacle avoidance challenges extraneous of actual matches.
However, this avoidance has not been practically used in
real matches. In order to integrate obstacle avoidance and
dribbling into real matches, the obstacle avoidance must be
proven to be reliable through extensive testing.

One useful testing platform is simulation, where poli-
cies are iterated in simulation, and then evaluated on real
hardware. We are striving to have real time solution, where
particular fail cases on the real hardware can be duplicated
immediately in simulation and debugging can happen at
the same time on the simulator and the real robot. This
requires analysis of the consistency between simulation and
real hardware at a high level.

Previous work in analyzing consistencies between sim-
ulation and real environment has been examined primarily
for motions. If certain sets of parameters yield the same

∗ GRASP Laboratory, University of Pennsylvania, Philadelphia, PA 19104
{smcgill3,yida,vlarry}@seas.upenn.edu
{adityasr,yiseung,ddlee}@seas.upenn.edu

Fig. 1: Navigation through obstacles is tuned in both simu-
lation and on real hardware

joint angle trajectories on real hardware and simulation,
than similar parameters in simulation should also work on
real hardware; thus, development can be offloaded from
real hardware [1]. However, the relation between simulation
and the real robot are never really the same, as shown in
comparing a walk engine across simulation and real hardware
with the same parameters [2]. This difference can be very
pronounced when trying to replicate complex behaviors,
since small differences accumulate.

Another approach is to record data from the real robot,
and attempt to replicate the fail cases in simulation. The
most extensive work at this alignment of simulation and real
hardware, for humanoid soccer in particular, comes from the
work at Darmstadt [3], where detailed logs are recorded on
each robot for offline analysis. We choose to focus on real
time debugging in our methods.

Obstacle avoidance systems in RoboCup are not new.
From the days of the Aibo, teams have been using vision
based obstacle avoidance [4], [5]. With this information, path
plans for navigating in and around these obstacles have been
considered [6]. However with humanoid robots, there is a
larger performance penalty for falling. Additionally, the head
can change its gaze in a more pronounced way that can
the information available in each frame [7]. Other obstacle
detection strategies that do not consider freespace include
player recognition [8] and sensing body contact [9] on the
B-Human software platform [10]. Outside of the Standard
Platform League, however, it is important to detect obstacles
without a model of the robot.

In the next sections, we outline our approach, where data
is displayed in real time, so that the system can be paused
and the world can be analyzed immediately upon detection
of a fail case. With logging, it is difficult to the real world
conditions that caused a failure.

behnke
Text-Box
In Proceedings of 7th Workshop on Humanoid Soccer Robots,
IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan, November 2012.



Fig. 2: The real time monitoring GUI provides a good view
of the robot’s state.

II. DEBUGGING METHODOLOGY

The overall structure is described in previous work [11].
It consists of motion, vision and behavior subsystems. The
vision subsystem processes the video stream and extracts ob-
ject, such as balls, goalposts and lines. The motion subsystem
communicates with robot-specific actuators and sensors, and
generates joint trajectories for walking, kicking, and get up
routines. The behavior subsystem processes object positions
to form a world model and command walking velocities and
kicking directions.

All of these subsystems establish a set of shared variables
that every other subsystem can access. These variables are
also transmitted over a network to a host debugging system,
where a human operator can clearly see the state of the
robot at any moment. Simulated robots communicate with
the host debugging system in a different way to achieve the
same goal. At every step of simulation, the simulated robot
is able to dump any amount of data on the host computer
for immediate debugging.

A real time monitoring program, shown in Figure 2,
displays the shared variables to the human user. The user
is able to identify any algorithm failures based on either
debugging text, or visual cues. The monitoring program
displays the same information on the real hardware and
simulated hardware using the Webots simulation software
[12].

Because of this, we are able to compare the debugging
information of the robots when they are placed in nearly the
exact same state on a real field and on a virtual field. In this
paper, we will outline our approach to debugging obstacle
avoidance by iterating between real hardware and simulation.

III. VISION CONSISTENCY

It is crucial that the image processing yields the consistent
high level data for the obstacle detection routines in simula-
tion and on the real hardware. We use special real time tools
that allow a human user to reduce these differences as they
appear.

Fig. 3: Human interface for labeling pixels as color classes.
Green pixels are ground and red pixels are unclassified.

A. Color Consistency

Our algorithms rely on lookup tables that translate pixel in-
formation (RGB, YUYV, etc.) to discrete color classifications
(red, green, orange, etc.). For the simulation to be accurate,
similar color classes must be seen at similar perspectives on
the real field and the simulated field. The translation from
pixels to color classes is done with a trained lookup table.

For obstacle avoidance, we use only two color classes -
ground and obstacle. Since only two color codes are used, it
is very simple to establish similar colors in simulation and
the real hardware. However, the real hardware is susceptible
to noise - seeing free space pixels in obstacles, and obstacle
pixels in free space.

We mitigate the affects of this noise by tuning the lookup
table in real time. We take a live YUV image feed from the
robot and display it along with the color classified image.
The human user clicks on pixels that it identifies as free
space and similar pixels are also selected, with some tunable
threshold. Pixels not clicked are identified obstacles. After
each click the lookup table is regenerated and sent to the
robot.

Shown in Figure 3 is our interface for the human user to
identify free space (field). The human user also teaches the
ball colors so that dribbling functions can be implemented.

The advantage of this interface is that, in real time, we
can update the color classification lookup table on the robot.
This is important when lighting changes or when similar
colored clothing appears for instance. It is also easy for
people to work on the obstacle avoidance code without in
depth knowledge of the vision system.

B. Obstacle Detection Consistency

The colors on a real field will never be classified as
perfectly as in the simulator, and so objects will not be
detected the same between these platforms. We provide
debugging tools to see when and how object detection fails.
If failure occurs on the simulator and the real robot, it is a
bug in the algorithm, while is failure occurs only on the real
robot, it is a tolerance mismatch.



Fig. 4: Failed Contour Detection on the left, and successful
contour detection on the right under different head angles
and poses.

Without knowing the underlying detection routines, we can
display for the user the results of the algorithm. In this way
we can position the robot instantly in critical poses and see
how the real robot compares to the simulated ones. Again,
this debugging allows a user who is unfamiliar with the code
to aid in quality assurance. This division of labor is very
important for RoboCup teams where personnel can change
on a yearly basis.

Shown in Figure 4 is the information displayed to the
user. False free space contours and missed boundaries can
be reported along with the head angles and the problematic
image with a single screenshot.

IV. CONTOUR DETECTION METHODS

We take a similar approach for detecting contours as
outlined on the Aibo [4], where vertical scan lines are used.
However, we always scan vertically and then account for the
horizon angle at later stages. Two approaches that produce
obstacle contours are described below.

A. Contours from Pixel Accumulation

A first approach for fast computation uses a simple his-
togram. Using the labeled image L, we generate a contour
of free space by first vertically accumulating free space
pixels. The set of free space colors palette C are defined
in binary for orange (000010B), green (010000B), and white
(100000B) representing the ball, field, and lines, respectively,
in a RoboCup competition.

Intuitively, we generate free space pixel histogram for each
column, denoted F(c), which is visualized in Figure 5c. By
simply picking the value of every histogram bin, we have
the free space contour as Figure 5d.

F(c) = ∑
r
[L(r,c) ∈C] (1)

(a) Input Image
10 20 30 40 50 60 70 80

5

10

15

20

25

30

35

40

45

50

55

60

(b) Labeled Image

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

(c) Free Space Pixel Histogram
0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

(d) Free Space Contour

Fig. 5: Pixel Histogram based Free space Detection

where the number of labeled pixels in the set of free space
pixels is summed over all rows r for a column c.

B. Contours from Clustering

A more computationally intense procedure using clusters
of obstructing pixels is robust to some of the failure cases
seen in the histogram method. In this method, we cluster all
the labeled non-freespace cells into group, and analyze some
of their important properties. These clusters are performed
column by column.

Property Description
CENTc,i The Centroid of the Cluster
SIZEc,i The Number of Pixels in the Cluster
LOWc,i The Lower Bound of the Cluster
UPc,i The Upper Bound of the Cluster

TABLE I: Properties of Clusters with Non-Free Space Color

(a) Noise-Free Labeled Image (b) Free Space Contour

Fig. 6: Pixel Clustering based Free space Detection

This method allows us to tune performance for robustness
to noisy pixels. Clusters with small pixels counts are ignored
when they go below a certain threshold. Clusters that appear
too low in the image are also ignored.



V. WORLD COORDINATE PROJECTION

Given any contour producing method, we project the
output contour into world coordinates for use in avoidance
behaviors. The free space contour CONT(Ix, Iy) is detected in
the image coordinate frame in terms of pixels. We consider
the problem of projecting the pixel based free space contour
to robot body coordinate as CONT(xb,yb,zb).

Using a monocular camera mounted on a set of servos, we
must make the assumption that all pixels seen in the frame
occupy the z = 0 plane. We can then project all points to
x,y space, and transform those x,y points from the frame of
the physical camera to the frame of the robot’s foot for a
practical frame of reference.

We depict the coordinate transform problem in Figure 7.
Our goal is to compute the position P2 in the frame OB when
given a pixel point P1 with image coordinates (xI ,yI). We
define the origin of the camera coordinate frame as P0. Points
in the camera (non-image) coordinate frame are specified
as rays P1

b (x1,y1,z1,w), where w can constraint the length.
Points in the body coordinate coordinate frame are specified
as P2

b (x2,y2,z2,1).

P0
b = T c

b ×P0

P1
b = T c

b ×T I
c P1

(2)

OB
XB

YB

ZB

OC

XC

YC

ZC

P2

P1

P0

P3

P4

R

Fig. 7: Projective Transformation Schematic

Consider the ray starting from P0
b passing through P1

b . It
intersects the ground plane R at the point P2

b with the relation
in Equation 3 where t is chosen such that z2 = 0 for P2

b .

P2
b = P0

b − t · (P1
b −P0

b ) (3)

We project each point along the free space contour in the
image coordinate frame, CONT(Ix, Iy) using the described
method to generate the free space contour CONT(xb,yb) in
the robot’s body frame. This is computationally tractable for
the robot to run at 30fps, since only the boundary pixels are
considered.

VI. LOCAL CONTOUR TRACKING

For dynamic environments in which the robot also moves,
it is important to keep track of the contour as it changes over
time. We initially employed a polar occupancy grid based
on previous work [5] to keep track of the local space of the
robot, but decided to switch to a clustering approach for a
set of discrete obstacles.

A. Probabilistic Occupancy Grid

We need to account for both odometry and newly per-
ceived contours at each timestep. Our approach is to update
the cartesian occupancy map using log odds ratios, where
new observations of a grid cell lead to additions, and free
space observations of a cell lead to subtractions. Additionally,
for every cell that is not observed, there is a decay of the
probability that that cell is occupied.

The probalistic approach allows for the map to adaptive to
changing environments, since uncertainty in each cell grows
over time. This means that our grid is robust to kidnapping
of the robot and, potentially, moving obstacles.

An example of this occupancy grid pipeline from image
to occupancy grid is shown in Figure 8.

(a) Global View
20 40 60 80 100 120 140 160

20

40

60

80

100

120

(b) YUV Image

10 20 30 40 50 60 70 80

5

10

15

20

25

30

35

40

45

50

55

60

(c) Noise Free Labeled Image
−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) Occupancy Map

Fig. 8: The full pipeline of the occupancy grid system
including contour detection.

VII. OBSTACLE AVOIDANCE STRATEGIES

Given the data from the occupancy map, we can generate
a host of obstacle avoidance strategies. It is important to be
able to rapidly develop and tune these behaviors for optimal
performance in RoboCup. It is very time consuming to do
this with real hardware, as opponents must be operated,
and fail cases must be replicated often. We thus wish to
evaluate policies in simulation as much as possible. Since
our vision system can be validated between real hardware



and simulation using the debugging tools described, the next
step is to validate the behaviors generated.

A. Initial Navigation Strategy

Given an occupancy grid of points, we set up a potential
field, where the repulsiveness of the field is the summation of
all repulsive effects of the occupied grid cells. The center of
the goal posts (for our testing strategy) is the lone attractive
force, with the occupied points providing repulsive forces.

(a) Occupancy Map (b) Occupancy Repulsion

Fig. 9: Modifying the initial trajectory (Dashed arrow) of
the robot based on a potential field to avoid obstacles (solid
arrow)

B. Data Collection

To do this, we compare the paths chosen in identical
scenarios on real hardware and the simulated robot. If the
paths chosen are similar, then we can expect that behaviors
found in simulation will perform the same on real hardware.
The scenario includes 10 cylindrical posts spaced .8 meters
apart in the configuration shown in Figure 10. There is a pair
of green goalposts on one end of the barrier posts, and the
robot on the other end.

We log data on an offboard computer from wireless
debugging data sent from the robot. We record at 8 Hz the
pose of the robot. We show the path points for 3 types of
paths – starting from the center, starting from the left corner
of the barrier posts, and starting from the right. The tests
have been conducted only once to show the working system,
however, multiple runs are required for a sound basis of
comparison.

In Figure 11, the real robot stopped short of the goal
position (3 meters forward, zero meters) in front of the
obstacle in front of it. This behavior was observed in the
simulator, where there is a large cluster of blue pose points
around the (1,-0.5) mark; however, in the simulator, the robot
eventually wandered past the barrier. We would like to run
more trials to capture this behavior where the robot is “stuck”
at an impasse, because it shows how the algorithm is not
robust to certain conditions. In other tests, the simulator
became stuck but also eventually wandered away, whereas
this case from the left was the one instance where the robot
in real life stayed in a stuck position for a prolonged period.

In Figure 12, one difference that we saw was that the
robot can choose the left or right at the first obstacle. This

Fig. 10: The configuration of the posts is identical in simu-
lation and for real hardware.

Fig. 11: Path comparison between simulation (blue) and
real hardware (red) when starting from the left, where the
coordinates are measured in meters and the goal is (3,0)

makes comparison of the path generation difficult, since each
path has essentially the same behavior, but there is little
overlap. One way to remedy this problem is to reduce the
symmetry in the obstacles, as there can be many optimal
paths in environments that are symmetric.

In Figure 13, we find that the reported odometry from
the real hardware does not match the simulated hardware
in scale. This is to be expected, since there can be more



Fig. 12: Path comparison between simulation (blue) and
real hardware (red) when starting from the right, where the
coordinates are measured in meters and the goal is (3,0)

Fig. 13: Path comparison between simulation (blue) and real
hardware (red) when starting from the center, where the
coordinates are measured in meters and the goal is (3,0)

pronounced localization difficulties in a noisy environment.
To mitigate this in future work, we would like to utilize
a Vicon system for absolute measurement of the robot’s
position, rather than rely on the robot to report its own
position. The drawback is the time consumption using this
approach.

VIII. CONCLUSIONS

With more stringent rules and more realistic play desired,
it is imperative that obstacle avoidance become an integral
part of the RoboCup landscape. With our framework for
evaluating obstacle avoidance strategies in simulation and
on the real hardware, more intelligent behaviors can be
implemented at a faster rate.

From our initial work, we have identified ways to improve
testing conditions for better capturing of data. In addition to
collecting data from external sources, we also would like
to add more advanced behaviors and test cases where there
are moving obstacles. For instance, we plan to integrate ball

handling maneuvers into this framework so that dribbling
techniques can be employed.

REFERENCES

[1] Hirohisa Hirukawa, Fumio Kanehiro, Shuji Kajita, Kiyoshi Fujiwara,
Kazuhito Yokoi, Kenji Kaneko, and Kensuke Harada. Experimental
evaluation of the dynamic simulation of biped walking of humanoid
robots. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1640–1645, 2003.

[2] Shivaram Kalyanakrishnan, Todd Hester, Michael Quinlan, Yinon
Bentor, and Peter Stone. Three humanoid soccer platforms: Com-
parison and synthesis. In Proceedings of the RoboCup International
Symposium 2009. Springer Verlag, 2009.

[3] Dirk Thomas, Dorian Scholz, Simon Templer, and Oskar von Stryk.
Sophisticated ofine analysis of teams of autonomous mobile robots. In
Proc. 5th Workshop on Humanoid Soccer Robots at the 2010 IEEE-
RAS Int. Conf. on Humanoid Robots, Nashville, TN, December 2010.

[4] Jan Hoffmann, Matthias Jngel, and Martin Ltzsch. A vision based
system for goal-directed obstacle avoidance. In Daniele Nardi, Martin
Riedmiller, Claude Sammut, and Jos Santos-Victor, editors, 8th Inter-
national Workshop on RoboCup 2004 (Robot World Cup Soccer Games
and Conferences), volume 3276 of LNAI, pages 418–425. Springer,
2005.

[5] S. Lenser and M. Veloso. Visual sonar: fast obstacle avoidance
using monocular vision. In Intelligent Robots and Systems, 2003.
(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference
on, volume 1, pages 886 – 891 vol.1, oct. 2003.

[6] Juan Fasola, Paul E. Rybski, and Manuela M. Veloso. Fast goal
navigation with obstacle avoidance using a dynamic local visual
model.

[7] S. Kohlbrecher, A. Stumpf, and O. von Stryk. Grid-based occupancy
mapping and automatic gaze control for soccer playing humanoid
robots. In Proc. 6th Workshop on Humanoid Soccer Robots at the
2011 IEEE-RAS Int. Conf. on Humanoid Robots, Bled, Oct. 26th -
Oct. 28th 2011.

[8] Alexander Fabisch, Tim Laue, and Thomas Rfer. Robot recognition
and modeling in the robocup standard platform league. In Changiu
Zhou, Enrico Pagello, Sven Behnke, Emanuele Menegatti, Thomas
Rfer, and Peter Stone, editors, Proceedings of the Fourth Workshop
on Humanoid Soccer Robots. o.A., 2010.

[9] Thomas Röfer, Tim Laue, Judith Müller, Colin Graf, Arne Böckmann,
and Thomas Münder. B-Human Team Description for RoboCup
2012. In Xiaoping Chen, Peter Stone, Luis Enrique Sucar, and
Tijn Van der Zant, editors, RoboCup 2012: Robot Soccer World Cup
XV Preproceedings. RoboCup Federation, 2012.

[10] Thomas Röfer, Tim Laue, Judith Müller, Alexander Fabisch, Fynn
Feldpausch, Katharina Gillmann, Colin Graf, Thijs Jeffry de Haas,
Alexander Härtl, Arne Humann, Daniel Honsel, Philipp Kastner, To-
bias Kastner, Carsten Könemann, Benjamin Markowsky, Ole Jan Lars
Riemann, and Felix Wenk. B-human team report and code release
2011, 2011. Only available online: http://www.b-human.de/downloads/
bhuman11 coderelease.pdf.

[11] S. G. McGill, J. Brindza, S.-J. Yi, and D. D. Lee. Unified humanoid
robotics software platform. In The 5th Workshop on Humanoid Soccer
Robots, 2010.

[12] Webots. http://www.cyberbotics.com. Commercial Mobile Robot
Simulation Software.

Acknowledgements: The authors would like to recognize the National
Science Foundation and the Office of Naval Research for partially supporting
this work through grants CNS 0958406 and ONR 45006.


