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Abstract—While the quality of matches between the teams in
the RoboCup Standard Platform League has increased a lot, there
are still certain situations that prevent the game from progressing.
One of the most severe ones is when a team loses track of the ball,
because it cannot score goals or prevent the opponent team from
scoring goals without knowing where the ball is. In this paper a
method is presented to quickly find the ball again by searching
the least-recently observed parts of the pitch. A consistent model
shared by all robots of the team to identify these parts of the
field is explained, as well as the procedure to coordinate the
observation among the teammates, such that a varying number
of robots can participate in the process.

I. INTRODUCTION

The RoboCup Standard Platform League (SPL)1 is certainly
one of the most exciting research settings. It poses a number of
general robotics problems to be solved, e.g. detecting certain
features in images, self-localization, multi-agent cooperation,
etc., while being constrained enough to allow a fair comparison
of the results achieved to solve the aforementioned problems
(cf. Fig. 1). The key element of the league is the fact that all
teams participating use the same standard platform, i.e. the
robot Nao manufactured by Aldebaran Robotics [1]. Thus, the
teams can focus on the software side of robotics problems,
rather than constructing robots on their own. As a result, the
league has quickly progressed in its four years of existence,
which made the games interesting to watch even for those,
whose main interest is not robotics but soccer itself.

Despite all the advances in developing a software to let
a group of Nao robots play soccer, it becomes noticeable
during pretty much every game that the scene is only partially
observable by a single robot. This results in robots losing
track of certain features, which may be more or less severe,
depending on the feature being lost. The most severe case
is losing track of the ball, since this defeats nearly all of the
behaviors of a soccer player, given that the overall task is both
to prevent the ball from rolling into the player’s own goal and
to score goals for his own team.

To avoid this situation, numerous measures are taken, such
as maintaining a combined, team-wide model of the current
state of the ball or implementing multi-agent cooperation to
watch the motion of the ball [2]. While this significantly
reduces the chance of losing track of the ball, it does not

1http://www.tzi.de/spl

Fig. 1. RoboCup Soccer Standard Platform League: Nao robots au-
tonomously playing a 4 on 4 soccer match in a color-coded environment.

completely prevent it from occurring. Therefore, it is crucial to
regain to find the ball again as quickly as possible to continue
the normal, ball-aware behavior.

In this paper a method called field coverage is introduced
to quickly find the ball again after it has been lost. It has
been implemented in the robot soccer software of the team
B-Human, the SPL world champion of the past three years.
Prior to using this method, the reaction of B-Human’s robots
to losing track of the ball position was to just spin around
while scanning the pitch with the camera, hoping that the ball
would show up again in a camera image while scanning for
the ball [3]. If the latter did not happen, the robot would walk
to a few different, fixed positions on the field, hoping to find
the ball along the way.

This procedure, called patrolling in the B-Human context,
changed considerably as a fourth robot was allowed playing in
an SPL team. A searching robot now takes into account which
parts of the field are actually visible and cooperates with the
other robots during patrolling. The idea is that if the team as
a whole knows some part of the field well, i.e. one robot of
the team looked at that part recently, but the ball has not been
seen, then the ball is probably somewhere else.

Since the introduction of the team-wide ball model, a robot
only needs to actively search for the ball if all team members
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lost knowledge of the ball position. Consequently if a robot is
searching, it can be sure its team members are search for the
ball, too. Knowing which parts of the field are visible to the
team members, patrolling can happen dynamically in a much
more organized way.

In the remaining paper related work is discussed in the next
section, the field coverage method is introduced in section III.
The results are briefly discussed in section IV before the paper
is concluded and possible future work is discussed in the last
section.

II. RELATED WORK

Mazda Ahmadi and Peter Stone developed a method to
perform sweeping tasks with multiple robots [4]. To carry out
such a task, a “robot must repeatedly visit all the points in its
environment in an effort to detect and react to different types
of events” [4]. While their method solves a problem that is
more general than the scope of the method presented in this
paper, they interestingly chose an orange ball appearing on a
green pitch as an event type in one of their experiments.

Similar to the field coverage presented here, Ahmadi and
Stone divided the robot’s environment into a grid made up of
cells, for each of which they recorded when the robot visited
the cell in question the last time. They then learned a policy
mapping the current state of the robot, i.e. its pose and the
grid, to points in the environment the robot should visit next.
This policy is subject to a function calculating the cost of a
policy with respect to different events which possibly happen
in different parts of the field and are of different importance.

This approach is extended to multiple robots by adding
a negotiating procedure for the region of responsibility for
each robot, in which the robot then carries out the continuous
sweeping. Due to the negotiation, these regions can change
dynamically and the addition and removal of other robots can
be handled. Notably the negotiation procedure does not require
communicating the poses of the robots, with the addition of a
robot as an exception.

Although it shares the grid component, the approach pre-
sented in the next section is somewhat different. It does not
take different types of events into account, so the only criterion
is the time passed since a certain part of the field has been
visited. In addition neither a policy function nor a negotiation
is involved. Instead, the robots communicate their state and
do all the calculations independently, which converge roughly
to the same result on each robot. The action to be carried
out then depends on the locations of the regions, as not the
entire field is partitioned but only the least-recently visited
parts of the field. The last visit to such a cell probably was
quite some time ago, since most of the time the robots do not
continuously sweep the environment, but ignore large parts of
the pitch being busy trying to score goals.

For coordinated exploration of an environment using a team
of robots, a very different method of partitioning a map into
segments is used in [5]. To carry out the partitioning, the
Voronoi Graph of the map of the environment is computed.
That graph is then separated at nodes, the distance of which

Fig. 2. Projecting the area visible by the camera onto the field.

“to the closest obstacle is at a local minimum” [5], which are
subject to certain constraints. These nodes are called critical
points. The resulting segments are then assigned to the robots
which are exploring the environment. Thereby the intrinsic
structure of the environment is taken into account when the
targets for the exploring robots are generated. While such a
structure is missing from a plain RoboCup soccer pitch, this
approach may be used as a basis for future work.

Kohlbrecher and von Stryk also represent the field as a grid
that is filled with visual perceptions of a humanoid robot, but
not for coordinated ball searching but for obstacle avoidance
[6]. Therefore, it accumulates measurements of obstacles and
free space, rather than timestamps of the last observation
of a grid cell. The grid has a much higher resolution than
the one used in the work presented here, because it is not
communicated between the teammates.

III. FIELD COVERAGE

The main part of the method presented in this section is
to maintain a model of the knowledge each robot has about
the field. This model is split into two parts, the local field
coverage and the global field coverage. A part of the field is
considered to be covered, if a robot looked at it recently. The
local field coverage of robot r1 contains which parts of the
field the robot r1 has looked at recently, whereas the global
field coverage of any robot contains which parts of the field
have been seen recently by any robot of the team.

A. Local Field Coverage

To keep track of which parts of the field are visible to a
robot, the field is divided into a very coarse grid of cells, each
cell being a square that has a size of 1

4m
2 (cf. Fig. 3). To

determine which of the cells are currently visible, the current
image is projected onto the field (see Fig. 2). Then all cells the
centers of which lie within the projected image are candidates
for being marked as visible, unless either robots are obstructing
the view to that cell (cf. Fig. 4) or the cell is so far away (2 m)
that other robots would not be recognized safely by the vision
system [7]. Having determined the set of visible cells, each of



Fig. 3. A local field coverage grid of one robot. The more intense the red
color around a cell is, the further in the past is the last time the robot looked
at the cell. The area bounded by the dashed line indicates the projection of
the field of view of the robot onto the pitch.

those cells is timestamped. These timestamps are later used
to build the global field coverage model and to determine the
least-recently-seen cell that can be used to generate the head
motion to scan the field while searching for the ball.

A special situation arises when the ball goes out. If this
happened, the timestamps of the cells are reset to values
depending on where the ball is likely to be put back onto
the field. This way, the least-recently-seen cell of the grid –
the cell which the robot has the most outdated information
about – is now the cell in which the ball is most likely to be
put back. This cell is determined by the last intersection of the

Fig. 4. The local field coverage for a robot standing on the center circle
with an opponent robot in front. The detected robot is marked by a small red
cross. The detected robot obstructs a large part (yellow lines) of the field of
view (light green dashed lines) and thus prevents the cells behind him to be
marked as visible.

Fig. 5. Grid resetting: if the referee computer signals that the ball went out,
the local field coverage grid is reset. The position where the ball crossed the
border of the pitch is marked by a red cross. The grid has been adjusted such
that the least-covered cells are at the field border where the ball is most likely
being placed back into the game. The least-covered cell is the cell containing
the throw-in position according to the rules, given that the estimate of the
position the ball went out is accurate. In this case this is one meter further to
the own goal, marked by the pink cross. The lower left corner of the throw-in
cell is marked by a yellow cross.

trajectory of the ball with an outer field line before the referee
computer sent the signal that indicates that the ball is out. Of
course, this grid resetting can only work well if the ball motion
was estimated accurately and if the referees put the ball on the
correct position on the field. However, without resetting, the
information stored in the grid would not be useful anyway.
One possible result of this grid resetting is shown in Figure 5.

B. Global Field Coverage

In addition to its own local field coverage grid, each robot
maintains the field coverage grids of its teammates, which are
incrementally updated in every team communication cycle. To
make use of the field coverage grids of the other robots, each
robot has to communicate its grid to its team mates. Given this
year’s field dimensions, 4-byte-timestamps and that each cell
is a square with 1

2m edge length, there are 4bytes× 4m×6m
( 1
2m)2

=

384bytes which have to be sent in each team communication
cycle in addition to the other data the robots exchange do
during gameplay. Since the resulting bandwidth requirement
would be beyond the bandwidth limit set by SPL’s rules, the
timestamps are ‘compressed’ to a single byte and the grid is
not sent as a whole but in slices. For each cell c which is part
of the slice which is to be sent to the other robots, a one byte
coverage value v(c) is computed, such that time − (255 −
v(c)) × tick roughly matches the timestamp stored for cell
c, with time being the reference, i.e. the current timestamp.
Setting tick = 300ms leads to coverage values which reach
up to 76.5seconds into the past. With n = 3 being the number
of slices the grid is divided into, the field coverage only adds
96
3 + 4bytes = 36bytes to the team communication. The 4



Fig. 6. The global field coverage grid. This grid is obtained by merging
the communicated local grids. Note that there are covered cells more than
2 meters away from the robot (black circle within a white rectangle with a
black border), so these cells are covered by other robots.

extra bytes are for the reference timestamp which has to be
sent with the coverage values.

As a result, each robot has its own local field coverage grid
and the ones it received from its teammates at its disposal. All
these grids have to be merged into a single global grid that
looks roughly the same for all teammates so that calculations
based on the grid come to sufficiently similar results for all
team mates. The value of each cell g(i) of the global coverage
grid is determined by calculating the maximum of all values
c(i)r stored by each individual robot r for that cell:

g(i) =
N

max
r=1

c(i)r (1)

Such a merged grid is shown in Figure 6. Note that in the
shown grid cells are covered well, although they are clearly
more than 2 meters away from the robot.

Based on the values in the global field coverage grid, it
has to be decided which parts of the field are covered by the
robots and which parts are not, i.e. which parts are unknown
to the team as a whole. Therefore, a threshold is required to
separate the two classes. It has to be determined dynamically,
because a fixed threshold could result in the entire field
being considered uncovered or covered, although there are
still significant differences in the coverage of the cells. The
problem has some similarities to determining which parts of
a gray scale image are black or white. Therefore, we applied
the Otsu algorithm [8] to compute the threshold.

The idea is as follows: The ideal situation to separate
the coverage values into covered and uncovered would be
the coverage grid containing only two different coverage
values vlow and vhigh. In this case, we could just choose the
coverage threshold t = (vlow + vhigh)/2 to be in between
them. This situation will not occur very often. Therefore, we
reverse the process and calculate for every possible threshold

0 ≤ t ≤ 255, how well the resulting model with only two
coverage values fits the coverage grid if we choose optimal
vlow and vhigh. To do this, we need an error function that
determines how well a model fits the actual grid.

e(vlow, vhigh) =
∑

c∈Grid

min
(
(v(c)− vlow)

2
, (v(c)− vhigh)

2
)

(2)
Instead of summing up all cells in the grid, we build a

histogram h of all coverage values, so we can get rid of the
minimum and rewrite eq. (2) as

e(vlow, vhigh) =

t∑
v=0

h(v) (v − vlow)
2

︸ ︷︷ ︸
evlow

+

vmax∑
v=t+1

h(v) (v − vhigh)
2

︸ ︷︷ ︸
evhigh

(3)
In eq. (3), t is the threshold as defined above, v is a coverage
value and vmax is the maximum coverage value. Now for a
given t we can find the optimal values for vlow and vhigh
by minimizing both e(vlow) and e(vhigh). By taking the
derivatives and solving for vlow and vhigh respectively, the
optimal values turn out to be the average coverage value of
all coverage values below t for vlow and above t for vhigh:

vlow =

∑t
v=0 h(v) ∗ v∑t

v=0 h(v)
vhigh =

∑vmax

v=t+1 h(v) ∗ v∑vmax

v=t+1 h(v)
(4)

By substituting eq. (4) into eq. (3), we get an error function
that only depends on the choice of the threshold t. After some
simplification this is:

e(t) =

vmax∑
v=0

h(v)v2 −

(∑t
v=0 h(v)v

)2
∑t

v=0 h(v)
−
(∑vmax

v=t+1 h(v)v
)2∑vmax

v=t+1 h(v)

(5)
With eq. (5), we calculate the optimal threshold by just trying
every possible threshold and then using the threshold with the
minimal error. Eq. (5) looks very computationally expensive.
Note, however, that in each iteration over t the summations
either change by only a single summand or not at all if the
threshold t is increased or decreased monotonically.

After it has been determined which cells are the uncovered
ones, each cell has to be assigned to a robot that will look
at it. This is done using k-means clustering. k is set to be
the number of robots that are able to cover a certain part
of the field, i.e. to be included, a robot must not be fallen
down or penalized and must be reasonably confident in its
self-localization.

The clusters are initialized with the current positions of
the robots and each uncovered cell is assigned to its closest
cluster. After that, the new cluster means are computed based
on the center positions of the cluster’s cells. This process
is repeated until the assignments do not change anymore. A
simplified version of the approach is shown as pseudo code
in Algorithm 1.

Handling the addition of a robot to patrolling is accom-
plished by setting the mean of the region of the added robot



Algorithm 1 Assigning cells to robots. Each robot is associ-
ated to a region which is considered valid, if the robot is able
to patrol.

threshold←highest ’uncovered’ value
Grid←global field coverage grid
converged← false
while ¬converged do

converged← true
for all cell ∈ Grid do

if coverage(cell) > threshold then
r ← region(cell)
Remove cell from region r

else
r ←clostest valid region to cell
if region(cell) 6= r then

Move cell to r
converged←false

end if
end if

end for
for all r ∈valid regions do

Compute new mean of r
end for

end while

to the robot’s current position on the field and by marking the
region as valid, so that cells can be assigned to that region.
To remove a robot from patrolling, the corresponding region
is marked as invalid and all cells currently belonging to the
region are removed from that region.

Using four-way floodfill on each cell of each cluster, the
connected components of each cluster are computed and the
largest connected component of each cluster is retained. So
for each robot currently able to patrol there is now one
connected component of uncovered cells. Now for each robot
the geometric center of the component is calculated, and used
as a patrol target for that robot, such that each robot knows
the patrol targets of all robots of the team, including its own.
Figure 7 shows the result of applying the procedure on the
global field coverage grid depicted in Figure 6.

As the robots move over the field, the patrol targets change
with the field coverage, such that each robot that can patrol has
its patrol target in its closest, largest region of uncovered cells.
Notice that besides leading to meaningful patrol targets this
procedure also has the nice property that the ways of different
robots to their patrol target do not cross.

IV. RESULTS

The field coverage method was used during the RoboCup
2011 competition in Istanbul. Together with many other im-
provements in B-Human’s soccer system, the field coverage
method significantly contributed to B-Human winning the
world cup for the third time in a row. To qualify the successful-
ness of the approach, we performed a simulation experiment.
Using our simulator SimRobot [9], we ran a four-against-four

Fig. 7. The largest connected components of each cluster of uncovered
cells. Each cell of such a component is marked by a yellow, blue or red circle
to indicate the cluster assignment. The pink circles are the resulting patrol
targets.

game, where the B-Human code played against itself. The
simulator provides a limited refereeing system. Thereby, the
game can run completely automatic. Figure 8 shows the results
of this game that represent five hours of effective game time,
in which the ball was “beamed” to a random location every
20 s. The data was recorded when the robots were actually
playing soccer, not when they prepared for the next kick-off,
because they do not try to track the ball during that time. The
graph shows a histogram over all image processing frames of
a single player, for how long the whole team has not seen
the ball (for estimating the shared ball model, cf. [2]). Note
that usually, the frequencies should continuously decrease
towards longer absences of the ball, since, e.g., a ball that
was absent for two seconds must have been absent for one
second before. However, there are a few exceptions, because
the time of absence is computed for the whole team, and
sometimes perceptions from teammates are ignored, because
they fell down, and one of their earlier perceptions is used for
the computation instead. This might let the time “jump”. The
results show that nearly 90% of the time, ball perceptions are
less than 300 ms old. Nearly 95% of the time, they are less
than a second old. The longest absence of the ball measured
was 18.7 seconds during a game time that is the equivalent of
15 regular SPL (final) games.

The improvement of the approach over the manual place-
ment of patrolling points is hard to quantify, since B-Human
never implemented a patrolling behavior with fixed positions
for a team of four robots. Doing so only for this paper would
not have been a realistic comparison.

As a part of the B-Human software, all calculations have
to be carried out in real time. Measurements on a single Nao
of a team playing soccer showed that the execution time of
all global field coverage operations combined is consistently
below one millisecond. With one robot within the field of view
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Fig. 8. The distribution of the time of how long the whole team has not
seen the ball in a simulated game.

of the Nao, the local field coverage operations run in less than
half a millisecond on average.

V. CONCLUSION & FUTURE WORK

In this paper, the field coverage method to quickly explore
the least-recently visited parts of the pitch in order to regain
knowledge of the ball position is presented. Part of the method
are a model to dynamically identify these parts of the pitch
and a procedure to dynamically assign those parts to a varying
number of robots, such that the assignments are known to
all teammates and the robots can observe these parts of the
pitch in a coordinated way. In contrast, using fixed target
positions for patrolling has the disadvantage that the manually
placed points are static and do not adapt themselves to the
game situation in which the ball is lost. As a consequence,
the paths to the static patrolling points are likely to cross,
increasing the time to reach the targets. Using the field
coverage these disadvantages could be removed. In addition,
the number of robots is not fixed. Therefore, the need to
develop different patrolling strategies for the team’s behavior
for different numbers of patrolling robots could be removed
as well. So besides an improved performance on the pitch,
the programmed behavior of the soccer team could be greatly
simplified.

The method is implemented in the B-Human software
system and has been used successfully during the RoboCup
2011 SPL competition. It reduced game delays in situations
in which the entire team lost track of the ball and could not
find it by just spinning around, either because the view of the
ball was obstructed or the ball was too far away to be reliably
detected in camera images. After all, the field coverage method
was one of the main building blocks for B-Human’s continuing
success, not only to win all games and the world cup, but also
doing so at least five goals ahead in each game.

Currently the partitioning of the pitch only takes into
account the coverage values of the cells of the global field

coverage grid and the positions of the robots taking part in
the patrolling process. The positions of the robots of the
opponent team are only considered implicitly as they affect
the coverage values of the cells that they obstruct. Taking
opponent robots into account may be the subject of future
work on this topic. As already suggested in section II, the
approach to segmenting an environment taken in [5] could be
applied to the segmentation of the pitch as well. The structure
of the environment would be given by the boundaries of the
pitch and the actual obstacles, i.e. the robots of the opponent
team. Instead of the constraints geared towards exploration, the
critical points used to separate regions could be constrained
such that at least one of its closest obstacles is a genuine
obstacle, i.e. not a pitch boundary.

While this approach might increase the performance of
the patrolling, it has to be tried whether this approach is
practicable given that obstacles change their positions fairly
quickly and the limiting computing power of the Nao.
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