
Sophisticated Offline Analysis of Teams of
Autonomous Mobile Robots

Dirk Thomas, Dorian Scholz, Simon Templer, Oskar von Stryk

Simulation, Systems Optimization and Robotics Group, Technische Universität Darmstadt
Hochschulstr. 10, 64289 Darmstadt, Germany

{dthomas|scholz|templer|stryk}@sim.tu-darmstadt.de

Abstract—
Debugging control software for an autonomous mobile robot is

a difficult and time consuming task. But it gets even harder, when
analyzing a whole team of robots and their team behavior. The
quality of the robots’ decisions based on their current knowledge
cannot be judged anymore by merely looking at their actions
from the outside.

In this paper an approach for collecting intrinsic and extrinsic
data of a team of robots during full operation and analyzing this
data offline is described. Since the amount of data to be collected
is quite large a method for automated and semi-automated
analysis is shown - making it possible to detect known problems
in an automated process and mark potentially interesting events
for manual review.

Furthermore a solution to reuse existing single robot debugging
tools on teams of robots, without rewriting each tool, is presented.

I. INTRODUCTION

The software enabling robots to act autonomously is becom-
ing increasingly complex. Different algorithms from various
domains are being integrated to perform a single task or
scenario. Debugging tools for such systems are essential
for building working solutions. In the context of teams of
mobile agents this task becomes even more complex due
to the distribution and limitation of the used platforms and
infrastructure.

In this paper a method for logging various different intrinsic
and extrinsic data and making it available for debugging tools
is presented. Since it cannot always be assumed that a global
system time is available special attention has to be payed to
data synchronization.

Especially in the scenario of multiple cooperating au-
tonomous robots in a dynamic environment, the amount
of intrinsic information generated during robot operation is
tremendous. Analyzing and reviewing all this data manually
is extremely time consuming and error-prone, and quickly
becomes unmanageable and inefficient. Algorithms for auto-
mated analysis of the information have to be applied in order to
make the review process more efficient. An important aspect
of the described approach is how existing debugging tools,
designed for single robot applications, can be reused in the
context of teams of agents.

The remainder of this paper is structured as follows: In
section 2 the need for debugging complex applications is
motivated and the specific requirements for the scenario of
teams of mobile robots are given. In section 3 the authors’

implementation of the intrinsic and extrinsic data logging
is presented as well as the approach to synchronize this
information. After this, an improved concept to ease navigation
around the large amount of data and automatically analyze the
information is presented in section 4. The section continues de-
scribing the approach to reuse existing debugging functionality
and presents some debugging tools specific to teams of agents.
The paper closes with concluding remarks and an outlook in
section 5.

II. MOTIVATION AND REQUIREMENTS

As background for specifying the requirements for the
described work, the scenarios where the method was applied
are described in short.

A. Scenarios

The authors’ group is participating in two leagues at the
RoboCup competition, which is an international research and
education initiative. The first scenario is an autonomous soccer
game played by humanoid robots. This provides an environ-
ment of standardized benchmarks for autonomous robots to
foster artificial intelligence and robotics research where a wide
range of methodologies can be examined and integrated. The
ultimate goal of RoboCup Soccer is to develop a team of fully
autonomous humanoid robots that can win against the human
world champion team in soccer. The authors are participating
in this competition as part of the team Darmstadt Dribblers
[1], which is a two time champion in the Humanoid Kid-Size
League, winning it in 2009 and 2010.

Additionally the work presented here was applied by Team
Hector [2] participating in the RoboCup Search And Rescue
League since 2009.

Both scenarios have several aspects in common which are
similarly present in any complex autonomous systems: The
developed robot software applications integrate several differ-
ent domain specific algorithms and functionality to provide
an integrated overall system. The functional components vary
based on the targeted objectives and cover different approaches
for processing and filtering sensor data, self localization and
mapping as well as behavior and motion control. Each scenario
has its own focus but since the requirements are continu-
ously increasing the robot application software becomes more
and more complex. The successful combination of all these
different parts in an integrated robot application software

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 41-46

Fig. 1: The number of messages exchanged per second be-
tween the numerous components inside the robot control
software

is a significant challenge and requires a great amount of
debugging.

B. Storing Intrinsic Data Locally

The software for both scenarios is based on RoboFrame
[3] which provides message-oriented middleware (MOM)
functionality. Due to the complexity of the application the
amount of data exchanged between the different functional
components is tremendous. Fig. 1 shows a rough overview
how many messages are communicated in the two scenarios
and how much data is involved. All of this data may be
necessary for thorough debugging capabilities. Because of
limited wireless network connectivity this information has to
be logged locally on each agent. Since even the local storage
is quite limited in size and write speed depending on the
scenario it may only be possible to log a subset of the data
for later review. The recording must be performed as efficient
as possible in order not to affect the runtime behavior of the
robot control software which would render the results useless.
The logged data from multiple robots must be synchronized
later on for a combined offline analysis.

C. Navigating Large Amounts of Data

In the considered scenarios during ten minutes of operation
approximately half a million messages are exchanged and
potentially recorded. Due to the large amount of data the
navigation through this collection is also of high relevance.
Besides simple timeline-based navigation methods it should
be possible to mark important points in the log automatically
using different algorithms. This supports the developer in
reviewing somehow interesting or relevant periods manually.

D. Reusing Single-User Debugging Tools

In an existing project various different debugging tools
have already been developed since every algorithm and data
requires its own graphical user interface for visualization and
debugging. Most of them are unable to work properly when
receiving data from multiple agents simultaneously, e.g., a
dialog displaying the camera images usually only handles data
from a single robot. Rewriting or adapting them for the use
with teams of robots would be a time-consuming and repeated
task and should therefore be avoided.

E. Enhancement with Extrinsic Information

Since even the comprehensive intrinsic data from all robots
may not be sufficient to gain a good overview of the environ-
ment during the analysis, the integration of additional external
sensors is important. In the described method multiple external
video cameras are used to record the environment from exter-
nal points of view. This provides valuable information for the
developer when debugging and comparing the intrinsic data
with the real situation of the environment.

F. Existing Approaches

In this area only a small number of publications exist
since the application complexity needs to be quite high until
debugging tools of this sort are required. In many simpler
scenarios and applications the debugging solution for single
robots are sufficient.

But there are some approaches especially from the context
of RoboCup where debugging of teams of agents or integration
of external data is done. E.g. the LogViewer [4] of the former
GermanTeam [5] in the Four-Legged League is capable of
integrating a single external video to assist the debugging.
But the debugging capabilities are limited to the functional
component for behavior control and do not cover other data
collected in the applications.

Another solution called Vizard [6] was implemented by the
team ’The Ulm Sparrows’ who participated in the Middlesize
League of RoboCup. Although their tool helps in debugging
and analysis of the robots software, several aspects are still to
be addressed. Synchronized playback for distributed recorded
data and the integration of extrinsic information need to be
added to work with teams of autonomous robots acting in a
highly dynamic environment.

On the other side there are tools like the Interaction Debug-
ger [7] which is used to analyze human-robot interaction. It
enables integrating various different intrinsic and extrinsic data
and replaying and visualizing them in a synchronized way. The
drawback of that approach is the need for a central server for
logging the data and a separate capturing PC to record videos
which is impracticable for mobile robots restricted to wireless
communication.

III. LOGGING DATA

A. Intrinsic Data

As the utilized message-oriented middleware is based on
the publish-subscribe paradigm all intrinsic data is passed
as messages between functional components. This simplifies
integrating an additional subscriber which receives all data of
interest and stores it, e.g., in a binary logfile. But the amount
of data to be exchanged is quite significant - in particular the
raw data of the camera images amounts to nearly one gigabyte
per minute.

The used hardware platforms have three limitations relevant
to the data recording: First the overall space for data storage is
limited to a few gigabytes; Second the throughput to write data
to the storage medium is quite restricted so that the amount
of data stored per second must be reduced; Third and most

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 41-46

Fig. 2: The dialog for configuring logging functionality.

importantly the processing power needed to log the data should
not decrease the control software performance. Depending on
the debugging focus various different kinds of information are
relevant. Therefore, the type of messages to be recorded can
be configured as well as their frequency.

This functionality was implemented on top of RoboFrame
using the inherent feature for requesting specific messages
with a given frequency. If the communication layer had not
provided the functionality for publisher-side throttling, a huge
overhead of published data had decreased the performance and
therefore limited the amount of logged messages even further.

Besides this some usability features have been integrated
like stopping the recording when the storage device is nearly
full or triggering specific logging functionality through a
remotely connected graphical user interface (see Fig. 2).

B. Synchronization

If the multiple robots involved do not share a global time,
which is the case in the mentioned scenario, the need for
synchronizing the logged information arises. Instead of doing
this manually for every single logfile, a method to determine
the time offsets between the teammates was implemented.
Therefore, every robot continuously broadcasts its current time
every N seconds and responds to each broadcast of a teammate
with a unicast using the wireless LAN interface and UDP
protocol. Based on this information a robot can calculate the
offset between both clocks by assuming a similar delay in
sending the broadcast and receiving the answer. The procedure
is derived from the simple network time protocol (SNTP) [8].
But instead of adjusting the system time of one host, the
calculated offset between the two hosts is written to the logfile
for offline interpretation.

The calculated time offset between the two robots is ad-
ditionally broadcasted to all teammates to assure that each

teammate is aware of all pairwise time offsets. This becomes
important when you consider the case of substituting robot A
with another robot C during operation, e.g., due to hardware or
software problems. Since the robots A and C never operated at
the same time they were not able to exchange timestamps. This
makes it impossible to synchronize their logfiles automatically,
without using the propagated offsets of robot B with each
teammate A and C. But with this information it becomes
possible to only load the logfiles from robot A and C and
still synchronize them automatically, as they contain the time
offsets between A and B as well as between B and C.

The accuracy achieved by this simple method is high enough
for the mentioned scenario but may not be for other areas.
Obviously, a time drift is not addressed by this method as it
was not required in the described scenarios due to the short
length per mission of only several minutes.

C. Extrinsic Data

In addition to the intrinsic data of the robots, arbitrary
extrinsic data can be collected and used for later analysis. In
the described scenario a video camera was use to record the
environment of the team of robots. This data was recorded on
a general purpose camera with a resolution of 720p in MPEG-
4 format. The video can be replayed synchronously with the
intrinsic data as can be seen in Fig. 3

Extrinsic data from multiple videos or cameras can easily be
integrated as long as the output format can be handled by the
multimedia library FFMPEG. But for the described scenarios
one camera was sufficient to show the relevant parts of the
environment. Since synchronizing the video with the intrinsic
data would require complex algorithms this has yet to be done
manually once per video.

IV. AUTOMATED ANALYSIS

Due to the quantity of messages that is archived even
in short periods of time, the task of looking through the
information becomes increasingly complex. The chronological
data can be navigated using a time- or frame-based time
line. But since the number of messages can easily become
overwhelming, a different concept for navigating through this
data is necessary to allow an efficient review of the available
information.

To ease the process of navigating through the data additional
information must be provided to the user. This can be achieved
through an automated extraction of prominent points in time,
which supports the user in browsing the information. These
points in time are named events in the following. Arbitrary
algorithms can be used to extract events offline based on the
recorded data.

In Fig. 4 a partial view of a list of several hundred events
is shown whereas the complete list of messages would have
been a thousand times longer.

In the described scenario of soccer playing robots the
game state (including the playtime, the score, penalties etc.)
is continuously recorded to the logfile. A custom algorithm
is used to generate events at the points in time where the

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 41-46

Fig. 3: Model viewer showing the robots’ and ball’s positions
(top) synchronized with the external camera image (bottom)
including some overlays generated from the logged data.

Fig. 4: List of events easing navigation of recorded data.

state changed, which enable a better navigation through the
recorded data.

A. Identify Known Problems Automatically

Besides events which are only used for a better overview of
the recorded data additional events are generated to identify
known issues automatically. Such information permits the
user to focus on relevant periods and efficiently review the
recorded data as these events identify situations which are most
relevant for manual analysis. Several different algorithms have
been implemented to make the analysis tasks of the selected
scenarios more efficient.

B. Discontinuity of Self Localization

The task of self localization for mobile robots is to de-
termine the current position and orientation of the robot. As
long as the mobile platform is not manually repositioned,
it can only move in space in a continuous manner and
with a limited speed. Therefore, if the position of the robot
changes considerably in a short timeframe, the determined
location must either have been wrong before or afterwards.
An algorithm detects such discontinuities using predefined
thresholds and generates events at these points in time.

C. State Oscillation in Behavior Control

Another example, which shows the gain of the automated
analysis, is from the domain of behavior control. In the consid-
ered scenarios the behavior is implemented using hierarchies
of finite state machines defined in XABSL [9]. A common
problem with this approach exists when the state machine
continuously oscillates between multiple states. This is usually
due to insufficient hysteresis in the transition constraints,
which is especially valid for robotics due to uncertainties.

An algorithm has been implemented to detect such oc-
currences in the behavior generating corresponding events.
These problems are especially difficult to find manually as
the timeframe of the occurrence is very short. Thus the time
to identify these cases is reduced significantly and users can
concentrate on tracking down the source of the issues.

V. REUSING EXISTING DEBUGGING TOOLS

For existing projects various different debugging tools exist
which are normally suited for communicating with a single
robot only. For example a dialog in the graphical user interface
for displaying the image of the robot’s camera. The dialog
might provide additional support for debugging the internals
of the used image processing. But for obvious reasons it is not
capable of handling data from multiple robots simultaneously
(see Fig. 5).

The optimal reuse of the existing functionality would be
to instantiate it multiple times and let every instance just
receive data from one specific robot. This could be achieved by
altering all existing dialogs and implement some controls for
choosing the data source to use. Since this process is very
time consuming and repetitive, a solution provided by the
middleware for all existing dialogs is preferred. But currently

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 41-46

Fig. 5: Visualization of intrinsic data from multiple robots
without filtering.

Fig. 6: The central view for specifying the correlation between
views and particular robots

nearly none of the existing message-based middleware provide
the necessary meta-information and allow to redirect the data
flow accordingly without touching any dialog implementation.

In RoboFrame the interaction between each dialog and
the middleware is handled by a gateway. The details about
the specific API design of the communication layer to support
such approaches is described in another paper [10]. Following
the concept of dependency injection, the gateway is exchanged
with a custom implementation which restricts each dialog to
communicate with a single robot. The setup which dialog
should communicate with which particular robot is done using
a central configuration view (see Fig. 6).

This policy is then enforced by the custom gateways al-
tering the information exchange between the dialogs and the
middleware. Therefore, the views only receive messages from
a single robot as depicted in Fig. 7, which shows multiple
instances of the same view, each displaying the camera image
of a particular robot.

For increased usability the configuration cannot only be
changed using the aforementioned view but also using key-
board shortcuts. Thereby, the correlation of the currently
selected view of a particular robot can be altered without
switching to another view by using a single keystroke only.

VI. RESULTS

The described methods for collecting intrinsic and extrinsic
information on distributed systems and automatically synchro-

Fig. 7: Multiple instances of a single view, each communicat-
ing with a particular robot

TABLE I: Performance impact of recording large messages in
the soccer application measured on an AMD Geode

Recorded Messages Avg. Frame Rate Avg. Data Rate

None 16.43 Hz -
All percepts and models 16.32 Hz 142 Kb/s
- plus one image every 5 seconds 15.80 Hz 262 Kb/s
- plus one image every second 13.07 Hz 742 Kb/s

nizing these data sources for offline analysis have been used
since 2009 in the authors group.

A. Performance

Since a large amount of data is logged locally on the
robot the performance impact has to be considered. Extensive
measurements of the performance depending on the set and
frequency of recorded data have been made and are summa-
rized in TABLE I.

On the previously used AMD Geode 500 MHz it was not
feasible to record e.g. all raw images processed. Mainly the
serialization of the large amount of data required too many
CPU resources and therefore had a negative impact on the
processing speed of the application.

In the meantime the PC hardware of the humanoid robots
has been upgraded to an Intel ATOM with 1.6 GHz, using an
USB stick as storage for the logged data. On this new platform
the amount of recorded data could even been increased without
harming the application performance. It is processing images
at a constant rate of 30 frames per second which is the limit
of the used USB camera. The main limiting factor for logging
on this configuration is the data throughput rate that can be
constantly achieved when writing to the USB stick. To avoid
any performance penalties through wait states when writing
log data, only one image every five seconds is recorded in
addition to the complete intrinsic data.

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 41-46

(a)

(b) (c)

Fig. 8: Difficulty to identify the source of problems in complex
applications. All three robots seem to approach the ball
obstructing each other in (b) and (c)

B. Automation of Analysis

The required efforts for analyzing the comprehensive
amount of data have been significantly reduced. First the
distributed recorded data is synchronized automatically which
frees the user from this time-consuming task. Secondly several
tasks for the analysis are automated using application specific
algorithms. They are used to generate events to improve
navigation and identify known problems. This enables efficient
analysis and permits an objective and reliable evaluation.

C. Multiple Robots

Reuse of the existing debugging tools for teams of au-
tonomous mobile robots enables thorough manual analysis
of the collected data. It has been successfully applied in
both described scenarios at RoboCup and can be seen in
use when analyzing the final game of RoboCup 2010 [11].
These tools are used in every test run of the robots and even
during real competitions. They enable the developers to track
down issues which would be impossible to resolve without
the combination of the information about the internal state of
the applications and the extrinsic data. Some issues can only
be identified when all data from multiple teammates can be
analyzed synchronously.

For example, in the situation depicted in Fig. 8, at first
glance all robots seem to approach the ball obstructing each
other. The initial assumption of the developers was either a
error in the dynamic role assignment, which should avoid
multiple robots approaching the ball concurrently, or a problem
with the team communication, whereby each robot would
perform as if it was the only agent on the field.

Based on the comprehensive information available for de-
bugging the behavior, it was possible to quickly identify
the reason for the problem. Both team communication and
dynamic role assignment worked flawlessly. The problem
showed to be that the target positions of the supporting robots
were set to unreasonable coordinates near their own penalty

area. This led to the observed clustering and obstruction of the
goalie which intended to clear the ball. Based on the insight
obtained through the analysis tools, this issue was resolved
easily.

VII. CONCLUSIONS

The continuous growth in complexity in teams of au-
tonomous mobile robots puts high demands on debugging
tools. Without a comprehensive solution for this task the
creation of robust and error-free software is unfeasible.

In this paper a method for logging arbitrary intrinsic and ex-
trinsic data in a flexible way has been presented. In this process
the necessary information for automatically synchronizing the
intrinsic data have been collected to ease later utilization.

These methods have been implemented as part of
RoboFrame and were successfully applied in multiple sce-
narios. Extensive measurements of the performance depending
on the amount of logged data were made to find a good trade-
off between performance impact and completeness of available
intrinsic data for later debugging.

Furthermore, a concept for navigating the extensive amount
of recorded data using events has been presented. Various
algorithms extracting different types of events have been
implemented for the considered scenarios, which demonstrate
the reduced time required for reviewing the data manually and
enable identifying known issues reliably and efficiently.

REFERENCES

[1] (2010) The Darmstadt Dribblers website. [Online]. Available:
http://www.dribblers.de/

[2] (2010) The Team Hector website. [Online]. Available:
http://www.gkmm.de/rescue

[3] S. Petters, D. Thomas, and O. von Stryk, “RoboFrame - A Modular
Software Framework for Lightweight Autonomous Robots,” in Proceed-
ings of the Workshop on Measures and Procedures for the Evaluation of
Robot Architectures and Middleware of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), San Diego, CA,
USA, October 29 2007.

[4] M. Risler, “Behavior control for single and multiple autonomous agents
based on hierarchical finite state machines,” Ph.D. dissertation, Technis-
che Universität Darmstadt, May 15 2009.

[5] (2010) The GermanTeam website. [Online]. Available:
http://www.germanteam.org/

[6] H. Utz, G. Mayer, and G. K. Kraetzschmar, “Middleware Logging
Facilities for Experimentation and Evaluation in Robotics,” in 27th
German Conference on Artificial Intelligence, Ulm, Germany, September
2004, workshop on Methods and Technology for Empirical Evaluation
of Multiagent Systems and Multirobot Teams.

[7] T. Kooijmans, T. Kanda, C. Bartneck, H. Ishiguro, and N. Hagita,
“Interaction debugging: an integral approach to analyze human-robot
interaction,” in HRI ’06: Proceedings of the 1st ACM SIGCHI/SIGART
conference on Human-robot interaction. New York, NY, USA: ACM,
2006, pp. 64–71.

[8] D. Mills, J. Martin, J. Burbank, and W. Kasch, “RFC 5905: Network
Time Protocol Version 4: Protocol and Algorithms Specification,” June
2010. [Online]. Available: http://tools.ietf.org/html/rfc5905

[9] M. Lötzsch, M. Risler, and M. Jüngel, “XABSL - A Pragmatic Approach
to Behavior Engineering,” in Proceedings of IEEE/RSJ International
Conference of Intelligent Robots and Systems (IROS), Beijing, China,
October 9-15 2006, pp. 5124–5129.

[10] D. Thomas and O. von Stryk, “Efficient communication in autonomous
robot software,” in Proc. IEEE/RSJ Intl. Conf. on Inteligent Robots and
Systems (IROS), 2010, p. accepted.

[11] (2010) The video analysis of Darmstadt Dribblers playing
the final at robocup 2010 on YouTube. [Online]. Available:
http://www.youtube.com/watch?v=puL3XH So2k

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 41-46

