
Adequate Motion Simulation and Collision
Detection for Soccer Playing Humanoid Robots

Martin Friedmann, Karen Petersen, Oskar von Stryk

Simulation, Systems Optimization and Robotics Group
Technische Universität Darmstadt

Hochschulstr. 10, 64289 Darmstadt, Germany
{friedmann | petersen | stryk} @sim.tu-darmstadt.de

Abstract— In this paper a humanoid robot simulator built
with the Multi-Robot-Simulation-Framework (MuRoSimF) is pre-
sented. Among the unique features of the this simulator is the
scalability in the level of physical detail in both the robot’s motion
and sensing systems. It facilitates the development of control
software for humanoid robots which is demonstrated for several
scenarios from the RoboCup Humanoid Robot League.

Different requirements exist for a humanoid robot simulator.
E.g., testing of algorithms for motion control and postural stabil-
ity require high fidelity of physical motion properties where as
testing of behavior control and role distribution for a robot team
requires only a moderate level of detail for real-time simulation of
multiple robots. To meet such very different requirements often
different simulators are used which makes it neccessary to model
a robot multiple times and to integrate different simulations with
high-level robot control software.
MuRoSimF provides the capability of exchanging the simula-

tion algorithms used for each robot transparently, thus allowing a
trade-off between computational performance and fidelity of the
simulation. It is therfore possible to choose different simulation
algorithms which are adequate for the needs of a given simulation
experiment, for example, motion simulation of humanoid robots
based on kinematical, simplified dynamics or full multibody
system dynamics algorithms.

In this paper the sensor simulation capabilities of MuRoSimF
are revised and the algorithms for motion simulation and collision
detection and handling are presented in detail. An algorithm
is presented which allows the real time simulation of the full
dynamics of a 21 DOF humanoid robot. Special consideration is
given to the merits and drawbacks of the different algorithms
depending on the scenario. The simulation’s performance is
measured and comparisons with the experimental performance
of the humanoid robots are given.

I. INTRODUCTION

In a soccer game of autonomous humanoid robots many
different humanoid robot motions must be selected online
for fast, goal-oriented motions like fast walking, turning and
getting up as well as for ball manipulation with the feet and for
collision avoiding navigation. High-level control software for
soccer playing humanoid robots consists of several modules
like image processing, world modeling, behavior control and
motion generation. These or similar modules can be found in
the architectures of many successful teams (e. g. [1], [2], [3],
[4], [5]). A typical (though simplified and generalized) control
application is depicted in Fig. 1.

Testing these modules with the real robot’s hardware is not
only expensive with respect to time and experimental cost. It

Fig. 1. Data flow in a robot control application. Boxes depict modules of
the application, ellipses depict exchanged data. A real robot can only provide
information on the sensor data it receives, thus allowing only tests of the
whole control software. A simulation of the robot can provide and process
further information (dashed arrows) which can be used for testing selected
parts of the robot control application.

is also usually quite difficult to find the reason for an observed
robot’s misbehavior. Using offline or ”in the loop” simulations
of the robot’s motion and sensing capabilities enables isolated
and repeatable investigations of the robot’s high-level software
and hardware.

Requirements on the physical correctness of the simulation
vary for different simulation purposes and scenarios. For
successful tests it is crucial to select an adequate simulation,
which not necessarily needs to be the most accurate one.
Testing coordination and control algorithms for a whole team
of robots requires high computational efficiency. Testing and
optimizing a humanoid robot’s motion capabilities requires
high physical correctness but no simulation of external sensors.

For testing the self localization of the robot, external sensors
like cameras and the robot’s motion must be simulated. As
the main concern is not on the sensor processing or motion
generation, a sound - but not necessarily too detailed - sim-
ulation of these properties is sufficient. Sometimes also a too
accurate simulation may even be harmful, as simulated effects
like vibration of the robot or blur and noise of the camera may
mask errors of the algorithms under observation.

When testing behavior of a team of robots, the main concern
is which decisions are made by each robot depending on its
knowledge of the world. This information can be generated
directly from a simulation without using the image processing
and world modeling software modules. Likewise the robots

motion capabilities can be simulated in a simplified manner.
In this paper a flexible and modular simulation for humanoid

robots is presented which fosters adequate simulation by pro-
viding several different algorithms for motion simulation and
collision detection. It differs significantly from the majority of
robot simulations used currently in the context of the RoboCup
Humanoid Robot League. The algorithms have been imple-
mented within the framework MuRoSimF [6], which provides
means for integration of different simulation algorithms within
one simulation framework.

The remainder of this paper is structured as follows:
The next section presents an overview on algorithms for
robot dynamics simulation, existing simulation packages and
simulations. In Section III the structure of simulations and
models built with MuRoSimF are described. Section IV, V
and VI present the algorithms used for motion simulation,
collision-detection and handling and sensor simulation which
are presently available. Results are presented in Section VII.
The paper concludes with a discussion of the results.

II. OVERVIEW

A. Multibody System Dynamics

Humanoid robots usuall consist of rigid kinematic chains in
a tree structure. As postural stability is of outmost importance
the robot dynamics must be consideed. The inverse dynamics
of a multibody system (MBS) with a fixed base and an open
rigid, kinematic chain of n degrees of freedom (DOF) is
generally described by the n-dimensional system of nonlinear
second order differential equations

τ = M(q)q̈ + C(q, q̇) + G(q). (1)

In this equation τ is the vector of joint-forces required to
yield the acceleration q̈ in the joints. M is the symmetric
and positive definite mass-matrix describing the inertia of
the bodies of the system, C are the Coriolis-forces acting
onto the joints, G are the gravitational forces. For bipedal
and four-legged robots with varying contact situations and
forces, the resulting system of differential algebraic equations
can be transformed to a similiar second order system using
a reduced dynamics approach as described in [7]. Further
external forces which may be caused by collisions or friction
can be introduced by adding a vector F (q, q̇) depicting the
impact of these external forces on the single joints. This leads
to

τ = M(q)q̈ + C(q, q̇) + G(q) + F (q, q̇). (2)

Calculating τ from q̈ is known as the problem of inverse
dynamics. It can be solved efficiently by the well known
Recursive Newton-Euler Algorithm (RNEA) in O(n) runtime
without explicitly calculating M .

Solving the equation for q̈ (for given τ) is known as
calculation of the forward dynamics. Prominent algorithms for
solving this problem are the Composite Rigid Body Algorithm
(CRBA) [8] and the Articulated Body Algorithm (ABA) [9],
cf. [7]. The CRBA explicitly calculates the mass matrix M
column wise by evaluating the RNEA n + 1 times for q̈ = 0

resp. q̈ = ui where ui denotes a unit vector where the i-th
component is 1. The resulting linear equation is solved leading
to an order of O(n3). Instead of that the ABA solves this
equation implicitly yielding an O(n) algorithm. For a small
DOF the CRBA will perform better with a break even at a
DOF of 6 to 9 (depending on the implementation) [10].

For a reasonable simulation of the robot’s dynamics, addi-
tional robot data not included in the kinematical data is needed.
These include mass, center of mass and inertia tensor for each
rigid link and joint of the robot as well as models describing
the torques generated by the robot’s joint drives.

B. Simulation Packages

For simulating the motion of multibody systems, several
packages exist which provide algorithms for numerical inte-
gration, collision detection and handling and robot modeling.

The Open Dynamics Engine ODE [11] is an open-source-
project that provides collision-detection and -handling for
several geometric primitives and an algorithm for rigid body
dynamics. Each joint and each collision is modeled as a
geometric constraint that removes one or more DOF from
the system. Solving this system has O(n3) complexity where
n is the number of removed DOFs. Numerical integration is
performed with a low order, one-step method with constant
time step length.

AGEIA PhysX [12] is a physics engine mainly used in
games. To accelerate the simulation, it uses a physics pro-
cessing unit (PPU), an add-in card that can perform up to
530.000.000 bounding sphere tests per second.

The Newton Game Engine [13] is a freely available closed-
source package for physics simulation. It uses a deterministic
solver, unlike other physic engines that use iterative algo-
rithms.

Karma [14] is a physics engine developed by epic games.
Collision detection is only performed with bounding volumes.
It can be decided for each body whether the motion simulation
should be accurate (but slow) or quick (but not very precise).

C. Existing Simulators

SimSpark [15] is a simulation framework on which is used
in the RoboCup 3D simulation league. It uses ODE for physics
simulation. New robot models and environments can be added
using a description language.

USARSim [16] is a simulation environment based on a
the Unreal Engine by epic games [17], which provides not
only physics simulation, but also tools for visualization and
integration of description languages. The physics simulation
in Unreal Engine 2 is based on Karma, Unreal Engine 3 uses
AGEIA PhysX. With USARSim a variety of different robots
can be simulated, including humanoids as shown in [18]. A
variety of sensors is provided. A simulator based on USARSim
is used in the RoboCup Rescue Simulation league.

SimRobot is a simulator based on ODE. In [19] the sim-
ulation of wheeled and four-legged robots was shown. Other
robots and different environments can be defined with RoSiML

[20], a description language based on XML. Many sensors like
cameras and different distance sensors can be simulated.

Microsoft Robotics Studio [21] provides tools for program-
ming robots as well as a 3D simulator. The simulation of
many different sensor types is available. The dynamics are
based on AGEIA PhysX. Webots [22] is a commercially
available simulation that deals with wheeled, legged and flying
robots and provides a lot of different sensors. The physics
simulation is based on ODE. Gazebo is the 3D-simulator of
the player/stage project [23], [24]. It supports the simulation of
cameras and distance sensors. Motion simulation is based on
ODE. OpenHRP [25] is a simulator for humanoid robots based
on CORBA. Collision detection and forward dynamics are
realized as CORBA-servers, each of them can be exchanged
by other implementations.

D. Discussion

As mentioned in Sect. I different purposes and test scenarios
have quite different requirements and needs.

For motion simulation the simulators mentioned above all
include some physics engines, of which most of them have
their origin in computer games. But games require only simple
and mainly plausibly appearing physics simulation. However,
a robot motion simulator used in humanoid robot research
must be able to describe the physical behavior sufficiently
accurate. Also it is often difficult or impossible to exchange
the algorithms used in these physics engines. In closed source
projects it is not even always documented, which specific
algorithms are used to compute and integrate the motion
dynamics.

To overcome these problems and limitations, MuRoSimF
provides a way to combine different simulation algorithms and
models. Several algorithms differing in accuracy and run-time
requirements are provided. The algorithms used for motion
simulation can be chosen for each robot individually, so that
simulations can be created which are adequate to a given task
(see Sect. IV).

III. STRUCTURE OF SIMULATION

A simulation consists of two main parts: Models of the
systems under consideration (e. g. robots, ball or environment)
and simulation algorithms computing the behavior of these
models (e. g. motion simulation, collision detection or visual-
ization). Within MuRoSimF each model is described as a set
of objects where each object contains a set of constant and
variable properties describing the object. Constant properties
are assigned to an object during creation of the model, variable
properties are assigned during simulation setup if they are
needed by a simulation algorithm as input or output data.

A. Robot Modeling

Robots are modeled as sets of objects connected in a
tree structure. An object essentially is a container holding
several constant or variable properties. As shown in [26] it is
desirable to have a limited set of basic objects for modeling the
robot. In MuRoSimF these objects are the robot’s base, rigid

Fig. 2. Structure of a simulation, consisting of models for robot and ball,
algorithms for motion and camera simulation and collision detection.

TABLE I
BASIC OBJECTS FOR MODELING THE ROBOT’S STRUCTURE.

Object modeling parameters
Base no parameters

Rigid translation length and direction
Rigid rotation axis and angle
Revolute joint direction of axis
Prismatic joint direction

fork no parameters
endpoint no parameters

TABLE II
SOME OF THE PROPERTIES WHICH MAY BE ADDED TO AN OBJECT DURING

MODELING OF A ROBOT.

Property symbol type used by algorithm
mass m R

center of mass com R3 dynamic motion simulation
inertial tensor I R3x3

shape see Sect. V collision detection / visualization
surface parameters collision handling

color / texture visualization

translations, rigid rotations, revolute joints, prismatic joints,
forks and endpoints. Each of these objects basically describes
a homogeneous transformation relative to the last link of the
kinematic structure. With the exception of endpoint and fork
after each object one following object is added to the structure.
Forks are used to add two following links. Endpoints describe
the end of one limb and thus have no following link.

Using these seven basic objects the robot’s kinematic struc-
ture is modeled. The objects initially only hold informa-
tion describing its kinematic structure (see Table I). When
modeling the robot, additional constant properties may be
added to each object. Which properties are added strongly
depends on the level of detail of the model as well as on
the simulation algorithms which are to be used. Examples of
available properties are given in Table II.

Two subsets of the robot’s objects are of special interest.
The set of bodies consists of all objects which can experience
external forces. These are all objects with the property mass
(the object will experience gravity) or shape (the object can
collide with other objects in the simulation). The set of joints
consists of all revolute and prismatic joints of the robot.

B. Simulation Setup

When setting up a concrete simulation, simulation algo-
rithms have to be chosen and connected to the models of the

simulated systems. During setup, the algorithms investigate the
models they are connected to and may add additional variable
properties (e.g. Table III) to the model’s objects (see Fig. 3).

Fig. 3. Left: Modeling of a 1 DOF robot arm. Only the known properties are
added to the model. Right: When connecting a simulation algorithm (here:
direct kinematics) to the model, additional properties needed or calculated by
the algorithm are added to the model.

TABLE III
SOME OF THE PROPERTIES WHICH MAY BE ADDED TO AN OBJECT BY A

SPECIFIC SIMULATION ALGORITHM.

Property symbol type
Position of Object r R3

Orientation of Object R R3x3

Velocity of Object v, ω R3,R3

Acceleration of Object v̇, ω̇ R3,R3

joint position q R
joint rate q̇ R

joint acceleration q̈ R
external forces fext, next R3

C. Execution of Simulation

After creation of the models and setting up the algorithms
the simulation may be executed. To do this, all algorithms are
registered with a scheduler. Each algorithm can be executed
at it’s own rate, e.g. 1 ms for motion simulation, but 100 ms
for camera simulation.

The scheduler provides a method which can trigger calcu-
lation of all algorithms at their respective rate for a given time
interval. For real-time simulation this method can be linked to
the computer’s clock. If the computation time of the algorithms
exceeds the simulated time interval, a warning is issued as
real-time simulation is not possible for the given setup.

IV. MOTION SIMULATION

To simulate the motion of a robot, several algorithms have
been implemented. Each of these algorithms can be used with
any humanoid robot modeled using the methodology described
above. All algorithms yield information on the motion of the
robots base and limbs, but they differ in realism and runtime
consumption. The algorithms may be exchanged transparently
within MuRoSimF. It is therefore possible to choose an
algorithm which is most appropriate for a given simulation
experiment.

A. Kinematic Walking Simulation

This is the most basic algorithm provided for biped motion
simulation. It assumes, that the robot is walking on a plane. For
each time-step the algorithm calculates the direct kinematics

of the robot while keeping the standing foot from the last time-
step in a fixed position on the walking plane. If this leads to
a configuration of the robot in which the other foot penetrates
the plane, the roles of the feet are swapped (see Fig. 4).

Fig. 4. Kinematic walking simulation of a humanoid robot. The current
standing foot is marked red.

Obviously this algorithm will produce sound results only
if proper walking motions are executed. The algorithm can
be used to evaluate sensing abilities of the robot which are
influenced by the robots motion (e. g. the changing pitch of
the camera). It is also useful for testing behavior control for
teams of robots, as it is computationally cheap.

As the algorithm does not consider the dynamic behavior
of the robot’s servo motors, there is no need for simulating
the servo’s properties. Instead the desired position is used as
current position of the joint.

When using the algorithm it is not possible for a simulated
robot to fall over. This quality of the algorithm can be very
helpful when performing the experiments mentioned above, as
wobbling of the robot or other disturbances may mask faulty
behavior of the algorithms under consideration. If postural
stability or other motions beyond slow walking are of interest,
another algorithm should be chosen.

B. Simplified Dynamics Simulation
To allow the robot to perform motions beyond slow walking

in a more realistic manner a simplified dynamics simulation al-
gorithm has been developed. This algorithm uses the common
center of mass and inertia tensor of the robot. This information
is used to calculate the motion of the robot’s base depending
on external forces the robot experiences by gravity or contact.
To do this, all external forces are summed up and transferred to
the robots center of mass, where the dynamics are calculated
for the robot as if it was a single rigid body.

Just like the kinematic walking simulation this algorithm
only needs information on the current position of the servos.
Only if frictional forces are to be introduced to the system by
the collision handling algorithm (see Sect. V-C), it is necessary
to take the rate of the joints into account as well.

The algorithm can be used to simulate a wide variety of
motions including falling down and getting up. As the robot’s
feet are not fixed to the plane, the algorithm will generate
some shaking of the simulated humanoid robot.

Even though the algorithm yields sound results for many
types of motion (e.g. Fig. 10), it is not a simulation of the
full MBS dynamics of the robot. As the algorithm does not
consider the reactive forces caused by motion of the robot’s
joints, it cannot be used to simulate any effects based on these
forces like balancing.

C. Full Dynamics Simulation

To overcome the limitations of the simplified dynamics
simulation a full dynamics simulation has been developed.

The algorithm considers the positions, velocities and accel-
erations of a given trajectory of the robot’s joints. These are
calculated from the desired positions provided by the motion
generation software under the assumption that the desired
position is reached within one control cycle.

By this a simulation of the individual servos is avoided and
the forward dynamics problem is reduced to six degrees of
freedom, as the only accelerations not known are those for the
free base of the robot. These are calculated by an adaption of
the CRBA which only considers the first six rows of Eq. (2),
yielding the upper left 6 × 6 submatrix M̃ of M as well as
the first six components F̃ of (C(q, q̇)+G(q)+F (q, q̇)). As
the robot’s base is free, it does not experience any forces, so
that the accelerations of the base can be calculated by solving

0 = M̃ q̈ + F̃ . (3)

If the acceleration of the base is calculated this way, all
internal reacting forces caused by accelerations of the joints
are considered as well as any external forces from the term
F (q, q̇). This leads to a more realistic simulation of the
robot’s motions, as effects like balancing can be displayed. In
combination with a simulation of inertial sensors this property
can be used for testing stabilization algorithms like the one
presented in [27].

Obviously this algorithm is not able to simulate any effects
caused by the robot’s servos like limited torque of the motor
or tolerance of the gear. These limitations can be overcome
by using a dynamics algorithm considering the torque of the
motors (e.g. the ABA) in combination with an appropriate
model of the servos.

V. COLLISION DETECTION AND HANDLING

The simulated scene contains several sets of objects, called
compounds. A compound, e.g., consists of all objects belong-
ing to a robot or all static objects in the scene. To speed up
collision detection, each compound is organized in a bounding
sphere hierarchy. To improve performance the detection of
inner collisions can be disabled for each compound separately.

Two classes of compounds exist: Unstructured compounds
are used to store arbitrary sets of objects while structured
compounds are used to store sets of objects having a defined
relation (e.g. tree structured robots).

A. Building the Tree

For sake of simplicity binary trees are used. Only the
leaves represent bodies of the robots. All inner nodes store
the bounding volume for their succeeding subtree.

For unstructured compounds a top-down-approach is used,
that divides a set of objects into two disjunct sets in each step.
The iteration is stopped, when each node contains one single
object. With this method the resulting trees automatically
fulfill the requirements mentioned above.

In the RoboCup simulation, the playing-field is the sole
unstructured compound. As it is static, the hierarchy has to
be calculated only once during initialization.

Each robot is a structured compound. The structure de-
scribed in Sect. III-A has to be transformed to suit the
requirements mentioned above. From a robot’s compound (see
Fig. 5) only the bodies are needed for collision detection.
As first step every node without a physical body is replaced
by an empty node. Then empty nodes with less than two
successors are deleted (e. g. the camera-node and the joint-
nodes in Fig. 5). After this transformation, the structure has
been reduced a lot, but there are still some nonempty inner
nodes, e.g. the base node in Fig. 5. These nonempty nodes are
moved to the leaves by inserting additional empty inner nodes
(see lower part of Fig. 5).

As the structure of a robot does not change, the tree has
to be calculated once, only the bounding volumes have to be
recalculated after the robot has moved.

Fig. 5. Top: Tree-structure of a simplified humanoid robot, consisting of a
body, two arms with one joint each, two legs with one joint each and a head
with a camera. Bottom: The transformed tree that fulfils the requirements for
collision detection.

B. Intersecting Two Trees

To detect collisions of two compounds, only the respective
trees have to be intersected. There are several approaches
for intersecting two trees. If the bounding volumes have an
intersection it is possible to descend simultaneously in both
trees, to descend first completely in the tree with the bigger
bounding volume, or to descend in the tree that currently has
the bigger bounding volume.

When intersecting a robot with the environment, it is not
reasonable to descend in both trees simultaneously, as the
playing field is much bigger than a robot. When intersecting
two robots of the same size, it usually takes more time
to first descend completely in the tree that seems to be
bigger. Descending always in the tree with the currently bigger
bounding volume requires a comparison of the sizes in each
step. As this can be detemined easily by comparing the radii of
the spheres this approach is taken for the regarded application.

C. Collision Response

To calculate the resulting forces of a collision, a soft contact
model is used, which allows the bodies to penetrate each
other. The collision depth cdepth and the collision normal cn

calculated by the collision detection are used for calculating
the normal force

fn =

{
1 · sc · cdepth · cn (objects getting closer)
sb · sc · cdepth · cn (objects separating)

(4)

that uses a spring model with different spring constants sc and
a scaling factor sb. The friction ffric between two colliding
bodies is calculated depending on the relative linear velocity
and the constant sµ which is defined for each pair of surface-
materials. As there is only one contact point an additional
pseudo friction ffric depending on the relative angular velocity
is calculated

ffric = vrel · sµ · fn
nfric = ωrel · sν · fn .

(5)

VI. SENSOR SIMULATION

For closed loop testing of the robot control software a
simulation of the robot’s sensing devices or an adequate
replacement is necessary. In this section several possibilities
for sensor simulation provided by MuRoSimF are discussed.

A. Inertial and Contact Sensors

Inertial sensors like gyroscopes, accelerometers or joint
position encoders can be simulated, as their respective values
are provided by the motion simulation.

Contact sensors can be simulated using data from the
collision detection which provides information, if a contact has
occurred. Additionally contact forces can be simulated using
the collision handling module.

B. Cameras

The main external sensor for robots playing soccer under
the rules of the RoboCup Humanoid League are cameras.
The camera simulation uses the visualization subsystem of
MuRoSimF, which is based on OpenGL real-time rendering.

After rendering the scene from the camera’s point of view,
the image can be post-processed to reproduce some features
of the camera (see Fig. 6). The image can be blurred using
a Gaussian filter and it is possible to simulate the distortion
caused by the camera’s lens. The later is done by measuring
the distortion of the real camera’s lens using the well known
Camera Calibration Toolbox for Matlab [28] and applying
the same distortion to the image. The lens is described by
focal center, focal length and a sixth order polynomial for the
distortion of a view ray depending on its direction.

As the simulated camera images are easier to process than
images from real cameras, the simulations main use is to
test and debug the robot’s image processing software under
optimized conditions. The simulation of the lens distortion has
proven very helpful when debugging the software module used
to calculated view rays to detected objects.

Fig. 6. Simulation of a camera with an aperture angle of 85 deg, mounted in
the upper chest of a humanoid robot. Left: the simulated scene. Left middle:
plain image from the camera. Right middle: same image with gaussian blur.
Right: same image with lens distortion.

C. Testing Without External Sensors

When debugging the behavior module of a robot’s control
software, it is often desirable to avoid errors caused by image
processing or self localization which can mask errors of the
behavior. To do this kind of testing, it is possible to send
position and orientation of all robots and the position of the
ball within the information to the robot control software.

D. Simulation of Sensor Errors

Currently all sensors are simulated with optimal values. In
an upcoming version it will be possible to simulate errors
caused by noise, limited resolution of analog-digital converters
or saturation. This will be done by adding a post-processing
step which can be realized as an additional module of the sim-
ulation, thus allowing customization of the error simulation.

VII. RESULTS

The simulation algorithms presented in this paper have been
used successfully in testing the control software for a 21 DOF
kid-size humanoid robot used by the authors’ team in the
RoboCup 2006 and 2007 [29] competitions.

A. Testing of World Modeling

All decisions of the robot’s autonomous behavior are based
on the robot’s knowledge of its environment, which is provided
by the robot’s world modeling module. The simulation has
been used in testing the self-localization (see Fig. 7) and
ball modeling modules. The modules’ quality be evaluated by
comparing their results with the ”real” values provided by the
simulation.

Fig. 7. Interactive testing of self localization. Left window: Interactive
simulation. Right window: The data provided by the self-localization software
(red arrows depict particles, dark blue arrow is pose estimate) can be compared
to the robot’s position and direction in the simulation (sole blue arrow).

With tests like that several sources of error (e.g. blur of
camera, changes in lighting or jiggling of the robot) which

Fig. 8. Testing the behavior for the obstacle challenge. Upper left window:
interactive simulation. Lower left window: simulated camera-image. Right
window: debug information from the control software: black circles depict
detected obstacles, the red curved arrow is the currently planned collision
free way to the goal.

happen in normal operation of the hardware can be avoided.
By this it is much easier to track errors in the algorithms being
monitored.

B. Testing of Behavior Control

The simulation has been proven very useful when testing
the robot’s behavior. At first a behavior is tested by using the
position of robots and ball provided by the simulation, thus
avoid any potential complications caused by the computer-
vision or world-modeling modules of the software. If this test
is successful, the behavior can be tested with simulated camera
images (see Fig. 8). As the simulation provides the possibility
to repeat experiments under exactly the same circumstances
debugging of unexpected behavior is facilitated very much.

C. Quality of Motion Simulation

With the dynamic algorithms presented in Sect. IV the
motions of the simulated robot are comparable to the real
robot’s motions. This especially includes falling and get-up
motions (see Fig. 9 and Fig. 10) which cannot be simulated
correctly by the kinematic walking simulation.

Fig. 9. Top: Goal keeper motion on the real robot. Bottom: the same motion
simulated with the simplified dynamics algorithm.

Fig. 10. Top: the real robot while getting up. Bottom: the same motion
simulated with the simplified dynamics algorithm.

D. Evaluation of New Hardware

Besides testing of software for existing hardware the simula-
tion also has been used in evaluating alternative robot hardware
components or environments. For example, the simulator can
be used to evaluate several possible camera configurations
(opening angle, resolution) to meet the requirements of differ-
ent tasks or environments (as in a strongly enlarged playing
field for humanoid soccer robots in RoboCup 2008).

As the algorithms for dynamics simulation are not limited
to biped robots, the simulation also has been used during the
design of a new four-legged robot platform [30]. By this it was
possible to optimize the design of the robot’s neck for viewing
capabilities. First experimental gaits could be developed before
the hardware was available reducing the development time.

E. Performance of Simulation

Due to the introduction of the newly developed collision
detection (see Sect. V), the performance of the simulation
could be improved significantly compared with the data given
in [6]. In an experimental setup the collision of a model-car
(seven bodies) with ten 21-DOF humanoid robots (each 20
bodies) could be simulated in real time using the simplified
dynamics algorithm (with a rate of 1000Hz) on a standard
laptop computer (Intel Pentium M CPU (1.86GHz), 1GB of
RAM, ATI mobility Radeon X700 graphics chip set). On the
same computer 6 robots, each equipped with a camera on 20
fps, could be simulated in real-time using kinematic walking.

To measure the absolute performance, the intersection tests
in each timestep were counted. Simulating the RoboCup
field with two robots, without using the bounding sphere
hierarchy, requires 973 intersection tests in each timestep.
With the collision detection described in Sect. V, depending
on the configuration of the movable objects, on average 178
intersection-tests between bounding spheres and 45 object-
intersection tests are performed per timestep. The distribution
can be seen in Fig. 11. This shows, that on average there have
to be performed only 23% of the initial tests per timestep.
Most of them are intersection tests between spheres which are
very fast to calculate. Even in the worst case only about 40%
of the tests have to be performed, compared to the collision
detection presented in [6].

Fig. 11. Left: Bounding sphere tests that have to be performed during a
simulation with two robots. Right: Object intersection tests that have to be
performed in the same scenario.

VIII. CONCLUSION

In this paper a humanoid robot simulator based on
MuRoSimF has been presented which provides adequate
motion simulation for different needs (e.g. physical accurate
simulation for testing a robot’s motions or efficient simulation
of bigger teams for testing behavior, communication and
cooperation), without the necessity to model the robot several
times for different simulators. A kinematic walking simulation
and a simplified dynamics simulation were used for testing
behaviors. In addition an algorithm for full dynamic simulation
of a multibody system was discussed.

The performance of the simulation could be highly im-
proved compared to [6] with the help of bounding sphere
hierarchies. In that way a collision between a model car and 10
humanoid robots could be simulated in real-time on a standard
laptop. Real-time simulation for six robots equipped with one
camera each is possible thus allowing tests for 3-on-3 games.

Even though the project is not open source the authors are
willing to share the project with other researcher for non-
commercial purposes.

Some videos of the simulation can be found at
www.dribblers.de/murosimf.

ACKNOWLEDGMENT

Parts of this research have been supported by the German
Research Foundation (DFG) within the Research Training
Group 1362 “Cooperative, adaptive and responsive monitoring
in mixed mode environments”.

REFERENCES

[1] M. Friedmann, J. Kiener, S. Petters, D. Thomas, and O. von Stryk,
“Reusable architecture and tools for teams of lightweight heterogeneous
robots,” in Proc. 1st IFAC Workshop on Multivehicle Systems, Salvador,
Brazil, October 2-3 2006, pp. 51–56.

[2] S. Behnke, M. Schreiber, J. Stückler, R. Renner, and H. Strasdat, “See,
walk and kick: Humanoid robots start to play soccer,” in Proc. of IEEE-
RAS International Conference on Humanoid Robots (Humanoids’06),
Genova, Italy, december 2006.

[3] R. Matsumura, N. Shibatani, T. Imagawa, T. Maeda, T. Miyashita,
T. Takahashi, Y. Akazawa, N. Yamato, and H. Ishiguro, “TeamOSAKA
(Kid size) Team Description Paper,” Tech. Rep., 2007, 6 pages. [Online].
Available: http://jeap-res.ams.eng.osaka-u.ac.jp/∼michael/quali/

[4] Y. Hayashibara, H. Minakata, Y. Seike, S. Ogura, H. Inoue,
K. Ichizawa, T. Horiuchi, M. Fukuta, S. Fujita, H. Kaminaga,
K. Irie, and H. Sakamoto, “CIT Brains and Hajime Robot,” Tech.
Rep., 2007, 6 pages. [Online]. Available: http://jeap-res.ams.eng.osaka-
u.ac.jp/∼michael/quali/

[5] T. Röfer, J. Brose, D. Göhring, M. Jüngel, T. Laue, and M. Risler,
“GermanTeam 2007 The German National RoboCup Team,” Tech.
Rep., 2007, 10 pages. [Online]. Available: http://www.sim.informatik.tu-
darmstadt.de

[6] M. Friedmann, K. Petersen, and O. von Stryk, “Tailored real-time
simulation for teams of humanoid robots,” in RoboCup Symposium 2007,
no. Paper No. 108. Atlanta, GA, USA: Springer-Verlag, July 9-10 2007.

[7] M. Hardt and O. von Stryk, “Dynamic modeling in the simulation,
optimization, and control of legged robots,” Z. Angew. Math. Mech.,
vol. 83, no. 10, pp. 648–662, 2003.

[8] M. W. Walker and D. E. Orin, “Efficient dynamics computer simulation
of robotic mechanisms,” Journal of Dynamic Systems, Measurement, and
Control, vol. 104, pp. 205–211, 1982.

[9] R. Featherstone, “The calculation of robot dynamics using articulated-
body inertias,” Intl. J. of Robotics Res., vol. 2, no. 1, pp. 13–30, 1983.

[10] R. Featherstone and D. Orin, “Robot dynamics: Equations and algo-
rithms,” in Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA),
San Francisco, CA, USA, April 2000, pp. 826–834.

[11] R. Smith, “ODE - Open Dynamics Engine, www.ode.org,” 2007.
[12] “AGEIA PhysX website, http://www.ageia.com/physx/,” 2007.
[13] “Newton website, http://www.newtondynamics.com/,” 2007.
[14] “Epic games, karma, http://udn.epicgames.com/two/karmareference.html,”

2007.
[15] O. Obst and M. Rollmann, “Spark – A Generic Simulator for Physical

Multiagent Simulations,” Computer Systems Science and Engineering,
vol. 20, no. 5, Sept. 2005.

[16] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “USAR-
Sim: a robot simulator for research and education,” in Proc. of the 2007
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2007.

[17] “Epic games, unreal engine, www.epicgames.com,” 2007.
[18] N. Greggio, G. Silvestri, S. Antonello, E. Menegatti, and E. Pagello,

“A 3d model of humanoid for usarsim simulator,” in First Workshop on
Humanoid Soccer Robots, December 2006.

[19] T. Laue, K. Spiess, and T. Röfer, “SimRobot - a general physical robot
simulator and its application in RoboCup,” in RoboCup 2005: Robot
Soccer World Cup IX, ser. Lecture Notes in AI, A. B. et al., Ed., no.
4020. Springer, 2005, pp. 173–183.

[20] “RoSiML, http://www.informatik.uni-bremen.de/spprobocup/RoSiML.html,”
2005.

[21] “Microsoft Robotics Studio, msdn.microsoft.com/robotics/,” 2007.
[22] O. Michel, “Cyberbotics ltd. - webots(tm): Professional mobile robot

simulation,” Intl. Journal of Advanced Robotic Systems, vol. 1, no. 1,
pp. 39–42, 2004.

[23] “Player/stage project website, http://playerstage.sourceforge.net/,” 2006.
[24] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage project:

Tools for multi-robot and distributed sensor systems,” in Intl. Conf. on
Advanced Robotics (ICAR), Coimbra, Portugal, 30 June - 3 July 2003,
pp. 317 – 323.

[25] H. Hirukawa, F. Kanehiro, and S. Kajita, “OpenHRP: Open Architecture
Humanoid Robotics Platform,” in Robotics Research: The Tenth Inter-
national Symposium, vol. 6/2003. Springer Berlin / Heidelberg, 2003,
pp. 99–112.

[26] R. Höpler, “A unifiying object-oriented methodology to consolidate
multibody dynamics computations in robot control,” Fortschritt-Berichte
VDI, Technische Universität Darmstadt, Darmstadt, Germany, Aug 6
2004.

[27] M. Friedmann, J. Kiener, S. Petters, H. Sakamoto, D. Thomas, and
O. von Stryk, “Versatile, high-quality motions and behavior control
of humanoid soccer robots,” in Proc. Workshop on Humanoid Soccer
Robots of the 2006 IEEE-RAS Int. Conf. on Humanoid Robots, Genoa,
Italy, Dec. 4-6 2006, pp. 9–16.

[28] J. Bouguet, “Camera calibration toolbox for Matlab,
www.vision.caltech.edu/bouguetj/calib doc/.”

[29] M. Friedmann, J. Kiener, S. Petters, D. Thomas, and O. von Stryk,
“Darmstadt Dribblers: Team description for humanoid kidsize league
of robocup 2007,” Technische Universität Darmstadt, Tech. Rep., 2007,
11 pages. [Online]. Available: www.dribblers.de

[30] M. Friedmann, S. Petters, M. Risler, H. Sakamoto, D. Thomas, and
O. von Stryk, “A new, open and modular platform for research in
autonomous four-legged robots,” in Autonome Mobile Systeme 2007,
ser. Informatik aktuell, K. Berns and T. Luksch, Eds. Kaiserslautern:
Springer Verlag, 18 - 19 Oct. 2007, pp. 254 – 260.

