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Abstract—Robot self localization has been shown to be needed
in both real robotic tasks and in current robotic competitions as
the humanoid soccer league and Standard Platform League (SPL)
of Robocup. In this paper we describe a platform to reproduce
animal navigation experiments in robots that aim to develop a
bio-inspired approach to the SLAM problem. The platform is
based on an Aldebaran NAO robot navigating inside an open
circular maze with external landmarks for the robot to perceive.
We describe the robot architecture and the platform used to
support spatial cognition model evaluation.

Index Terms—Humanoid robot, self localization, place cells.

I. INTRODUCTION

Self-localization in navigation has been shown to be of
great importance for the development of autonomous robots,
including robotic football teams, navigation in unstructured
environments like underground mines and cleaning robots, to
name a few. The present work presents the development of
a experimental platform to perform research in the field of
bio-inspired models of robot self-localization.

Animal spatial cognition experiments provide insight on the
neural mechanisms underlying their navigational capabilities.
By programming spatial cognition models into robots and
reproducing the same experiments, researchers are capable of
further develop a brain model of the animal’s self localization
capabilities.

Spatial cognition in rodents has been long studied. In his
experiments with rats, Morris et al. have shown that the animal
is capable of making decisions based on its global position
within a certain environment, proposing the existence of a
cognitive map[27]. Further studies have shown the existence
of cells with firing patterns that correlate to absolute loca-
tion information. Place cells found in the hippocampus are
shown to fire when the rat is within a certain region of an
environment[28]. Grid cells, found in the entorhinal cortex,
on the other hand, fire when the rat is near the vertices of an
absolute triangular grid laid out in the environment[24].

A robot experiment platform has been developed to re-
produce navigational experiments similar, but not limited to,
Morris’. The platform is based on an Aldebaran NAO robot
navigating on a open circular arena with external landmarks
for the robot to perceive. In this paper, we describe the robot
architecture and experimental platform used to support spatial
cognition model evaluation.

This article plays two roles. On one hand, it thoroughly
describes the experimental platform to ensure experiment
reproducibility and to share developed code. Thus, we include
software references and tutorial-like explanations in the article.
Additionally, technical aspects of the development are de-
scribed in depth. Some mathematical and technical arguments
are then presented.

Section II describes the environment that models the open
maze and the landmarks. Section III describes the robotic
system and the deployed software framework. Section IV
describes the software deployed in the robot including the
percepts, decision processes and actions. Sections V and VI
show the performed preliminary tests and the obtained results.
Finally, conclusions and future work is included in sections
VII and VIII.

II. EXPERIMENT ENVIRONMENT

The environment consists of a 2.5 m. diameter circle over
a green carpet. The circle is delimited by white tape stripes
conforming a 26-side inscribed polyhedra. Figure 1 shows the
experimental environment.

Four rectangular columns are placed in four cardinal points
of the circle (not real magnetic cardinal points). Each column
holds a different Japanese letter that serves as an identifiable
landmark to the robot. The Japanese letters are printed with
a surrounding .15 m sided black rectangle, as required by
ARToolkit (see Section III). These symbols where chosen
because they contain complex binary image patterns, which
makes them suitable for recognition. The landmarks where
held .22 m over the ground by the columns.

No special lighting devices have been set and the exper-
iments are carried out using the laboratory’s illumination,
which consists of regular fluorescent tubes.

III. ROBOTIC PLATFORM

The robotic platform is based on the Aldebaran NAO v4
robot. An Ubuntu distribution[19] has been deployed in the
robot, as well as the Robotic Operating System (ROS) and
third-party packages.

A. Ubuntu chroot
In order to be able to deploy software more easily in the

robot, an Ubuntu version has been deployed in it. Given the
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Fig. 1: The working environment. The horizontal landmark in the ground is not yet taken
into account by the perception system. Figure taken from [33].

robot has a i386 processor, it is possible to do so by building
a chroot system in almost any desktop machine and then
deploying it to the robot.

The chroot can be built following the tutorial found in
[2]. The Precise (12.04) Ubuntu distribution is recommended,
while the Raring distribution (13.04) is not recommended, due
to the fact that ROS Groovy (stable) version does not work in
that environment.

To use the newly deployed Ubuntu distribution, one has to
access the robot console through the ssh command and use
the chroot command[2] to change from the native operating
system to the new one.

B. Robotic Operating System

This new operating system has been equipped with the
Robotic Operating System (ROS)[15] platform. Using ROS has
many benefits. To begin with, plenty of developed software can
be used, as has been done in the developed software. Apart
from that, the ROS framework facilitates the development of
decoupled architectures by providing services like interprocess
communication. Additionally, the developed software is more
likely to be reusable when programmed in a standard plat-
form. Finally, ROS eases the development process of robotic
software by providing debugging and visualization tools like
those shown in Section IV

ROS can be deployed in the chroot system through the use
of the apt-get command[9]. This deployment method has been
developed in this work and has the advantage of deploying a
full Ubuntu system on the robot. This platform allows for an
easier deployment of ROS third party packages through the
use of the apt-get tool, avoiding the tedious task of cross-
compiling each one of them by hand.

After deploying ROS, a workspace is to be laid out, which
can be done following the tutorial in [6]. Additionally, a ros-
build workspace is needed to deploy old third-party packages
as explained in the next section. Rosbuild workspaces can
overlay catkin ones[7]. Once this has been set up, the rosbuild
environment will have access to the packages both catkin
and rosbuild workspaces, as well as the packages installed
by default with ROS.

C. Third-party packages

Some third-party ROS packages have been installed in
the system. The best way to do this is through the use of
the wstool[20], which has the same syntax as the old rosws
command[16]. These commands take care of downloading the
package’s last version once the repository has been established
using the wstool set command.

1) nao robot: This package interfaces with the naoqi pro-
gram running in the robot, providing an extra layer of abstrac-
tion. It provides useful functionality for software development
for the NAO robot:

• Publish of controlling service that allows to move the
robot using ROS messages

• Camera driver that polls images continuously and pub-
lishes them as ROS messages

• Robot URDF model[12] and a joint state publisher that
may be used by the tf [18] and robot state publisher[? ]
packages to compute transformation between the different
joint coordinate frameworks

As part of the present work, this ROS stack has been modified
to include a camera driver that polls both images at the same
time, called nao camera both.py. This version of the stack is
available as a git repository[11].

2) camera info manager py: This package provides a
python interface for the ROS camera info manager
functionality[4]. It is used by nao cam both.py to publish
camera intrinsic parameters to the camera info topic.

As part of the development process, a slight change has
been made to this package in order for it to allow publishing
more than one service. However, the updated version has been
merged to the main branch.

3) ccny: ccny package[8] provides functionality for recog-
nizing patterns like the one used in the landmarks. It makes use
of the ARToolkit software[21]. Besides visually detecting the
patterns, it provides information about the pattern’s relative
location to the camera, given that the camera is properly
calibrated.

The repository pointed out in the documentation does not
contain working code. The IHeartEngineering git repository[?
] should be used instead.

IV. ROBOT SOFTWARE

The robot program process sensorial information into higher
level features and use them to make navigation decisions. It
is composed of two interacting systems: the agent api python
package that runs locally in the robot and the Mobile Internet
Robotics (MIRO)[35] program running in a remote computer.
These two systems communicate with each other using the
protobuf software[14].

The agent api takes the images captured by the cameras
and process them to extract high level features. These include
the identifiable landmarks and the lines that delimit the envi-
ronment. Additionally, this high level features are processed to
infer higher level information required by the MIRO system.
The detected lines are projected to a 3D space and the robot



Fig. 2: Architecture diagram. Light shaded rectangles represent third party packages
whereas the dark shaded ones are developed in this work.

affordances are computed using this information. Besides, the
relative orientation and distance information of the landmarks
is translated to the perceptual schema required by the MIRO
system.

The MIRO system is used to implement a rat simulation
system that makes the navigational decisions based on the in-
puted information. To do this, neural models are implemented
using the Neural Simulation Language (NSL)[37] and Abstract
Schema Language (ASL)[36]. Once the neural models make
the navigational decisions, high level control command are
sent back to the agent api package to execute them.

Figure 2 summarizes the developed architecture.
Following, the main aspects of the agent api package are

explained. A detailed description of the rat simulation system
can be found in previous articles[22, 23].

A. Image capturing

Image capturing is done through the implemented ROS
node nao camera both.py. The images are inputed to the
image proc ROS module[10], which corrects the images using
an offline calibrated distortion model.

The camera was calibrated using the camera calibration
ROS module[3]. The output model was saved as a yalm
file. The camera info manager py ROS module[4] is used to
publish the information in this files.

Image capturing is made at a resolution of 640⇥480 pixels
at a rate of 5 frames per seconds.

B. Line detection

1) Image line detection: The line detection module (linede-
tector.py) applies two OpenCV[13] filters to the corrected im-
age from the bottom camera. First, a Canny edge detector[5] is
applied. Then, the probabilistic version of the Hough filter[26]
is applied. All parameters are set empirically to improve results
in the current environment.

2) Coordinate transformation: When working with single
camera visual features, there are a wide variety of options
regarding which coordinate framework to use and how to map
image coordinates to the chosen coordinate system. Tasse et
al. work with polar coordinates of the detected features, which
can be derived from the image in a straightforward way[32].
Silva et al. use the image coordinates and the known size of a
detected object to compute the egocentric cartesian coordinates
of the object[31]. Others use the fact that the object is in the
floor plane to derive egocentric cartesian coordinates from the
image coordinates[29, 30, 38], as does the present work. They
do not fully specify how this is done, though.

The detected lines’ image coordinates are transformed to a
3D space. This transformation can be done with a monocular
camera because the lines are known to be in the floor level, as
done by Jazmad et al. [25]. Thus, the z coordinate is known
to be 0, if a coordinate framework on the floor is used.

The transformation is done in two steps. First, the 3D line
of projection of each of the lines ends is found. Then, the line
is intercepted with the floor plane to find the 3D coordinates
of the point.

The projection line is found in the camera’s coordinate
framework first. This is accomplished by finding two points
in the line. The first point p

cam is the origin of the cam-
era framework, considered to be the focal point of the
pinehole camera. The other point q

cam has the coordinates
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distances. Both points belong to the projection line due to the
pinhole model.

Those two points are then transformed to the floor coordi-
nate framework using the tf ROS package[? ][18], obtaining
two new points p

floor and q

floor.
Then, the lambda equation of the line is considered, as

shown in Eq. 1.
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Then, the x and y coordinates of the point can be computed
as shown in Eqs. 3 and 4.
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C. Landmark detection

Landmark detection is delegated entirely to the ar pose ROS
package[1]. The corrected image from the top camera is passed
to the ar pose module.



Fig. 3: The rviz visualization of the affordance calculation. The robot model is shown
in white. Blue triangles represent navigable affordances and red triangles non-navigable
ones. The green lines show all the lines taken into account in the affordance calculations.
The output of both cameras is also shown in the left margin and the output of the Hough
algorithm is shown for the bottom camera.

Prior to the current robot architecture, color
matching has been used in our laboratory to detect
landmarks[34](submitted). The use of black and white
symbols as landmarks, as opposed to colored objects, turns
the landmark recognition process less dependent from color
calibration and from the environment illumination. Besides,
the pattern allows for a better estimation of both the 3D
coordinates, as well as the 3 degrees of rotation of the
landmark. Finally, the use of complex patterns lowers the
probability of false positives due to similar objects in the
background, that are usual with color matching techniques.

In the future, automatic landmark extraction such as SIFT
should be used. This would allow for the system to be executed
in real environments, but requires the system to be able to deal
with ambiguity.

D. Affordances processing

The rat simulation system takes the possible movement
information, which are referred as affordances in the present
work, into account when making the navigational decisions.
The python module calculates each affordance by intersecting
a triangle with all the detected lines. The triangle is isosceles
and the angle adjacent to the equal sized sides is attached to
the origin of the floor coordinate framework. The triangle then
models the possible ending positions of a movement in that
direction, given a certain movement error.

Having no intersection implies that the robot can move in
the direction of the triangle.

Figure 3 shows the visualization of the affordances triangles
using the ROS package rviz[17].

V. TESTS

The implemented software was tested by comparing the
estimations against the ground truth. Two experiments were
designed to test the landmark detection and the line detection
systems.

Fig. 4: Landmark detection experiment design from an aerial perspective. The rectangle
represents the landmark and the circle represent the different robot positions.

A. Landmark experiments
A landmark known to the robot was placed in a fixed

location. Then, the robot was required to estimate the distance
to the landmark from different locations. Each position was
0.1 meters away from the following and previous ones, and
they lie over one of two lines, one being perpendicular to the
landmark and another having a 45 degrees skew, as shown
in Figure 4. At each position, 20 distance measures of the
landmark were recorded.

B. Line experiments
Two experiments were designed to test line recognition and

the estimation of their location in a 3D coordinate system
relative to the robot.

The first experiment resembles the landmark recognition
one. A line was laid out in the floor and the robot position
was varied along a line perpendicular to it. At each position,
20 measures of the distance to the line were recorded.

The second experiment consisted on recording line measure-
ments while varying the robot’s head pitch angle. The location
of both the robot and the line were fixed. At each head pitch
angle, 20 line measurements were recorded. This experiment
was designed to test the integration of the robot’s joint angles
into the estimation of the line’s position. Namely, the change
in the camera’s position must be computed correctly in order
to derive the line’s position in the floor coordinate frame.

Given that lines are not identifiable and many lines were
detected at once, some work had to be done to ensure that the
distance to the intended line was actually being measured. No
line was placed between the robot and the reference line, so
the minimum distance to any line could be taken as the desired
measure. This had some negative consequences, as explained
in the next section.

VI. RESULTS

The landmark distance estimation results are depicted in
Figures 5 and 6. Even though the standard deviation of the 20
measurements at each ground truth value is plotted, they are
not visible due to their small relative values.

Figure 7 shows the results for the line distance estimation
tests. A greater measurement variance was observed in these
experiments, especially for the head pitch angle experiment.
Some noise in the line detection algorithm was observed at



Fig. 5: The estimated distance to the landmark as a function of the ground truth for
positions in the perpendicular line (left) and in the skewed line (right) with respect to
the landmark. The blue line represents the identity function (expected behavior). The red
line shows a least squares regression of the data.

Fig. 6: The estimated distance to the line as a function of the ground truth for positions
in the 45 degree skew line with respect to the landmark. The blue line represents the
identity function (expected behavior). The red line shows a least squares regression of
the data.

angles 10 and 15 , which could explain the higher variance in
the measured distance. Given that the distance to the closest
line was measured, a failure to detect the line intended to
be detected implied that the distance to other background
lines would be measured, interfering with the measurement
process. Some false positives detections close to the robot were
detected at those angles as well, which also interfered with the
measuring process.

It can be appreciated from the plots that, although the
estimations results in a linear response to distance changes,
the actual estimated distance is usually not accurate. However,
given the resulting linear behavior, the errors can be corrected
by scaling all estimations by a linear transformation. Thus,
it is the linear behavior what shows the correctness of the
implemented system, rather than accurate measurements which
can be obtained by calibrating that linear transformation.

VII. CONCLUSIONS

A robot platform for spatial cognition navigation experi-
ments has been implemented using a NAO humanoid, de-
veloped using the ROS platform. The software was installed
within the robot in a novel way, improving the development ef-
ficiency and reusability. Several third party packages have been
integrated successfully and new ones have been developed or

Fig. 7: The estimated distance to the line as a function of the ground truth for the head
pitch angle experiment. The blue line represents the constant function at the real distance
(expected behavior). The red line shows a least squares regression of the data.The angle
values correspond to those accepted by the NAO API.

modified to provide the functionality needed to reproduce the
experiments.

The robot platform showed positive results in the performed
tests. The observed linear errors are expected due to differ-
ences in the measuring units scales. Namely, the notion of
one meter in the robot does not correspond a real meter. The
error can then be fixed with a linear transformation.

The landmark distance estimation stability is attributed to
the maturity of the underlying ARToolkit software and the
fact the the landmark image provides a lot of information
to derive its location in 3D space. However, these results
validate the camera calibration process as well because a good
calibration is needed to get accurate estimations. Besides,
the integration of all joint transformations from the floor
coordinate framework to the NAO top camera is shown to be
working correctly, as these are needed to coherently transform
the camera coordinates to the floor coordinates in which the
distance is measured.

The line distance estimation showed positive results as
well. The algorithm showed a linear response to distance
variations as well. In addition, the computation of the camera’s
position and its calibration were again validated by these
experiments. A greater measurement variance was observed
in this case though, which is attributed mainly to the noise in
the probabilistic Hough line detection algorithm.

The inclusion of the black and white pattern landmarks
allows the system to scale to a larger number of different
landmarks, as opposed to color matching where the color
calibration can only be made for a few different colors.

The line detection and position calculation, affordance cal-
culation and landmark detection were developed as a ROS
package and they publish their results in reusable ROS mes-
sages. The existing nao robot ROS package was modified to
use both cameras concurrently. The camera info manager py
package was modified and the modifications included in the
main branch by the original authors.



VIII. FUTURE WORK

The first step is to incorporate the constants derived from
the experiments to calibrate the estimated distances to reflect
real world values.

Secondly, the line detection system is to be improved by
lowering the image noise that produces the variation in the
Hough line detection algorithm outcomes. Objective measures
of this noise will be included to assess the improvement in
performance.

Other future work include recognizing ARToolkit patches in
the floor that would represent a hidden goal to the robot, which
would complete the platform required to reproduce Morris’
and other experiments. Using automatic feature extractors such
as SIFT as landmark detectors would be also be desirable.
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