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Abstract— The Bunny robot is a new humanoid robot platform 
for teaching, research and competition. It has been developed to 
provide a detailed case study for undergraduate and 
postgraduate teaching, but it is also a research tool and 
competition robot. It is based upon the Robotis humanoid servo 
skeleton to which a multi-processor card cage and skull have 
been added. Steerable cameras and FPGA video stream 
processing provide VGA resolution image capture and 
processing. This paper describes a range of developments 
designed to improve the robot’s performance at football and 
athletics for RoboCup and FIRA competition. Vision processing 
additions are described in relation to their potential gains. 

I. INTRODUCTION 
Visual perception is an important function in a mobile robot 

facilitating navigation, object avoidance and directed motion 
towards or away from visual stimuli. The concepts of active 
vision, of visual attention and gaze control, Ballard [1] argued, 
can speed up image processing for mobile robot navigation 
and scene analysis. This paper discusses aspects of active 
vision through hardware and software implementations on the 
Bunny Robot; and explores implementation issues of 
Simultaneous Location & Mapping (SLAM) and eye vergence 
control in a low-power budget humanoid robot. 

The Bunny Robot has been developed as a platform for 
teaching robotics. It is a bipedal humanoid design with 28 
DOF (Wolf et al. [2]), it weighs 2.25kg incl. batteries and is 
60cm high including ears. It is based on the Bioloid humanoid 
servo skeleton from Robotis with Dynamixel AX12+ servos, 
but additionally has a central card cage that can hold five low 
power ARM-based processor circuit boards see Fig.1. The 
skull holds twin cameras, servos for head, eye and ear control, 
a 2-axis gyro and an FPGA for servo PWM, local processing 
and video stream pre-processing, see Fig.2 (left). The entire 
design has been modelled in Solidworks, supporting centre of 
gravity calculations, and animation to check mechanical 
function. The additional mechanical parts have all been rapid 
prototyped for ease of modification during development. 

Up to five processors can be inserted into the card cage, 
these are currently StrongARM processors from Toradex, the 
XScale PXA270 (500MHz) and PXA320 integrated into 

motherboards. The new OMAP 3530 processor from Texas 
Instruments is being integrated into new motherboard cards to 
reduce image sequence processing time and replace the 
XScale processors where required. These will slot into the 
body card cage to add to the heterogeneous cluster of 
processors running either winCE 5.0 or Linux. A backplane 
power supply provides efficient buck-regulation of 5v and 
3.3v for processor, FPGA and head servos. Host USB and 
Ethernet connection is also provided to support RNDIS and 
remote desktop debugging and host communications as well 
as point to point IP-based robot processor communications 
(see Fig.2 schematic diagram). The FPGA supports special 
purpose computation for camera image-stream processing 
from the two steerable, 30 frames per second VGA-resolution, 
cameras to dedicated DMA-based direct camera interfaces on 
two of the embedded ARM processors. 

Fig. 1. (left) Solidworks model of the Bunny Robot torso showing processor 
locations, (right) photograph of Bunny robot. The head has twin cameras for 
eyes, an FPGA, gyro and temperature sensor. The body has a card cage that 
holds 5 processors for control and cognition, and battery pack 

The robot was designed from the outset to compete in robot 
competitions, as it was recognised that this provides a strong 
motivation for students to learn and to contribute to the 
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continued development of the robot. It also ensures that the 
robot design never stagnates. This paper presents some recent 
developments on visual perception processing, focussed on 
playing robot football. 

 
Fig. 2. Schematic diagram of processing function  
within the Bunny Robot 

II.  VISION PROCESSING 
 The skull holds an Altera FPGA, type EP25C8T256 with 

approximately 25,000 macrocells, 609Kb RAM and 139 8x8 
parallel multipliers making a 200MHz programmable special 
purpose processor. The device is used to provide real-time 
stream processing of the stereo camera video data at a 
combined data rate of 18.4MB per second (at 30 frames per 
second). The FPGA currently provides camera sync extraction, 
centre of mass colour blob tracking, and output streaming to 
two processors, with the potential to feed video data for 
SLAM analysis in one processor and for stereo disparity 
calculations in the other, for example. Three new functions 
have been added recently, i) sub-sampling and 
luminance/chrominance extraction of the video stream ii) eye 
vergence control, and iii) eye gaze stabilization. These are 
described below and facilitate ball tracking, navigation 
through SLAM, and object tracking whilst the robot is 
walking. 

A. The luminance sub-sampling process 
This process transforms the video stream from the cameras 

(640x480 pixels, image format YUYV) to a luminance sub-
sampled image stream (320x240 pixels, image format: Y) 
according to the flowchart (Fig. 3). This process supports eye 
vergence control at a resolution of 320 by 240 pixels. 

Fig. 3. Sub-sampling process flowchart 

B. The eye vergence controller  
This design of an eye vergence controller was developed to 

provide depth perception to the Bunny robot. It is based on 
image patch correlation and triangulation calculus to recover 
the depth estimate and is implemented as hardware embedded 
in the FPGA.  

The central ‘foveal’ patch from the left camera image, a sub 
window of 21 x21 pixels (Lfov) taken from the centre of the 
camera image, is correlated with the whole right camera 
image (R) following eqn (2). 
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where Cfov is the correlation coefficient, n the number of samples, f(x,y) the 
right image patch, t(x,y) the left ‘foveal’ template patch, and sf, st standard 
deviations of intensity for f and t respectively.  
 

But as the template t (left camera image fovea) and right 
image f are sampled at the same time, and both are 
approximately the same field of view, then the normalisation 
is not required.  Hence eqn.1 reduces to a simple convolution 
operation, eqn2. 
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The correlation is conducted between two image patches, 
one from the left camera fovea (central window) and one from 
the right camera ‘searching region’ (the slave camera) as 
shown in Fig. 4. The cameras are synchronised and so images 
are captured at the same instant. Then, the result of this 
correlation is used to control the slave eye along its two 
rotation axes by defining the disparities dx and dy and finding 
the location of the maximum of the correlation result (Fig. 4).  

 
Fig. 4. Eye vergence flowchart 

 
To run the correlation computation, it is necessary to store 
both input signals in on-board RAM before processing. The 
correlation is implemented as an auto-correlation operation of 
the left eye foveal region with whole field of the right eye. 
From the correlation result, it is simple to extract the disparity 
along each axis and control the slave eye-servos to make it 
gaze at the same object as the master one, in such way that the 
object is centred in both images. 
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Fig. 5. Digital results of the correlation on camera signals from left camera 

h (source pattern to search) and right camera u (convolution result of match 
with target). Bottom right pattern is the correlation weighting function. 
 

Due to some synchronisation issues inside the correlation 
operator (input signals on Fig. 5 and output on Fig. 6), the 
current implementation does not fully steer the slave eye, as it 
operates with some jitter. It should be noticed that, in this 
implementation, the master eye does not move.  

 
Fig.  6. FPGA signals, from the correlation result (the 3 top signals) to the 
generation of the disparity ones (dx and dy). The 6 other signals are used to 
find the location of the maximum of the correlation result. 

However this is easily corrected by balancing the vergence 
angle simultaneously to both cameras, in concert with neck 
rotation Vergence can be set by defining a toe-in of both 
cameras to verge to a near-field point upon start-up, given that 
all features within the football pitch will be closer than infinity. 
An alternative is to iteratively cause a toe-in by a coordinated 
movement of both the neck servos and the eye servos to 
ensure that the cameras form an appropriate triangle, based 
upon a desire to make the an angle to the attended object, 
driven via a look-up table based upon master eye angle (Fig.7). 

Fast vergence control will provide fast depth estimation to 
target at 30 frames per second with a one-frame delay in 
processing.  

 

. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 7. Toe-in of steerable cameras optimises vergence and attention control 

C. The Gaze stabiliser 
The twin cameras are mounted on X-Y servo controllers, 

allowing for directed gaze control. When mammals move 
their eyes, gaze is normally held to a point of attention. The 
same is required of the robot to maintain stability of 
navigation and other visual information whilst walking. The 

robot has two integrated gyro units, the first a 2-axis device 
(MXD2020) is placed in the skull adjacent to the FPGA, the 
other a 5-axis HUVrobotics IMU is placed in the body card 
cage and is used to control gait. The 2-axis unit provides head 
pitch data at 8ms intervals. The Y-axis signal is processed and 
drives a servo to hold the eye gaze at a viewpoint, using 
Supertec Titch44 lightweight (4.5g) digital servos with an 
angular velocity of 60 deg /sec. 

Gaze stabilisation is necessary to maximise the number of 
“target in field-of-view” image frames that can be extracted 
from the camera video stream whilst the humanoid robot is 
moving. Without gaze stabilisation it is common to only 
enable the camera stream processing when the robot is 
stationary. 

The skull has a MEMS thermal gas bubble accelerometer 
(Memsic MXD2020e) that is designed to provide gaze 
stabilisation control, mimicking the vestibular ocular reflex 
(VOR) in primates. The inclination angle of the accelerometer 
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is given as 

€ 

αy = sin−1 Ay
g

, where Ay is the accelerometer 

output and g the acceleration due to gravity. The device can be 
treated as linear for inclinations between ±50°. The servos 
have an angular velocity of 60° sec -1 and are driven from a 
PWM source that requires a signal ranging from 1.5ms to 
2.5ms for a ±90° rotation. The user-set eye gaze y-axis can be 
modulated by the accelerometer output as described in Eqn.3. 
to achieve gaze stabilisation. 
 

€ 

yl = yd + (kα y − goffset ) ,     Eqn 3. 
 
where yd is a externally set y-axis fixation, ay is the inclination angle from 
head gyro, goffset to compensate for the gyro static pose component (the circuit 
board inclination when the skull is upright), and k a gain factor. K is set to 3. 
Updates are calculated every 8ms. 
 

Experiments with stabilisation show that the mass and 
viscous components of the eye servos dampens the gyro 
position changes to achieve a smooth change in position, 
without PID control. Camera stabilisation for head movements 
above +50° cannot be compensated as the accelerometer 
response flattens off. The head cannot move below -30° and 
therefore does not require compensation for forward 
movement. 

III.  IMAGE ANALYSIS 
The Bunny Robot is able to stream video data from the twin 

cameras to selected processors in the on-board computer 
network. The design concept at present allows 
microprocessors to control camera source and to receive 
centre of mass calculations for target coloured objects from 
the FPGA stream processor. In the planning are more 
sophisticated analysis to allow the robot to self-localise and to 
recognise objects and scene scenarios. Two studies in 
preparation for this have been conducted on (a) localisation 
and mapping using a Beagleboard, and (b) stereo from verged 
images. The plan is to implement both these functions on new 
ARM-based processors that will be added to the Bunny Robot 
card cage, including the OMAP 3530. 

A. Simultaneous Location and Mapping (SLAM) 
A mobile robot has to navigate through its environment. 

The identification and tracking of landmarks in a visual scene 
is known as Simultaneous Location And Mapping (SLAM). 
Early work, for example by Smith et al. [3], was mostly based 
on active sensors such as laser range finders and sonar. These 
sensors usually provide a 2D map. More recently, for example 
Lacroix [4] and Davison et al. [5] have developed systems 
based on digital video camera images. Much work is currently 
focused on creating a reliable SLAM algorithm able to map 
large field of view precisely whilst accurately estimating the 
position of the camera at a computational cost. 

A monocular SLAM system has been implemented for the 
Bunny Robot, using the Shi & Tomasi [6] corner detector to 
identify landmarks and image patch correlation to locate these 
in subsequent image frames using a 21x21 patch size. An 
extended Kalman filter Orderud [7] is used to estimate 3D 

camera pose based upon tracking up to 50 landmarks. 
Landmarks are forgotten if they fail to occur in a sequence of 
10 image frames. 

The work follows that of Davison et al. [8] and Civera [9] 
in using on monochromatic analysis of scenes to derive 
landmarks and in using image patch correlation for frame-to-
frame patch matching.  

 Experiments were conducted with the SLAM algorithm to 
compare the speed of processing in Linux on a laptop and on a 
Beagleboard with an ARM-based OMAP 3530 processor. A 
dataset has been created in order to precisely measure the 
difference between the estimated positions and the real 
positions. This dataset is a simple translation of the camera in 
an indoor environment. Several public datasets available on 
the Internet e.g. the datasets of Civera et al. [10] have also 
been used in testing. 

Table 1. 
Comparison of Processing Times for a Laptop and Beagleboard 
Function call Laptop BeagleBoard 

Shi-Tomasi detector 16ms 122.7ms 

Matching by image patch 30ms - 300ms 500ms - 4s 462 

Add new feature (1st) 293µs 1770µs 

Add new feature (20th) 9.236ms 167ms 

Update (1st) 5ms 91ms 

Update (20th) 16.5ms 349ms 

Prediction (1st) 3ms 45ms 

Prediction (20th) 6ms 192ms 

Measurement prediction 4-8ms 20-75ms 

Display map 2ms 10ms 

Total time (less verbose) 25s 790 5m 38s 29 

Throughput 7.2 frames/sec 0.5 frames/sec 

 
Table 1 shows the results of the comparisons of time to 

process 180 frames in a video sequence. The laptop is overall 
about 13 times faster than the OMAP processor on the 180-
frame analysis, although parts of the processing show only a 
five-fold drop in performance. Overall throughput is 7.2 
VGA-resolution frames per second for the laptop and 0.5 
frames per second for the Beagleboard. The standard GNU 
gcc compiler was used together with openCV libraries. There 
has been no OMAP optimisation; hence timings can be 
expected to see a ten-fold improvement for floating point and 
convolution operations when the NEON co-processor is used 
effectively. Given that the OMAP 3530 is consuming only 
300mw against the 15w of the laptop processor its 
performance is commendable. 

There is scope for performance improvement. For example, 
the corner detection can be realised in the FPGA and the 
correlation could be realised in the DSP core of the OMAP 
3530. More importantly, the functions “add new feature” and 
“update” could be modified to change only part of the 
covariance matrix of the system and thus avoiding the 
multiplications of large matrices. 
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The algorithm gives coherent results when all the 
parameters are well estimated, but a higher order SLAM 
algorithm needs to be created to add meaning to the corner 
features and to give a better estimate of a global map with a 
reduced computational time. Since the cameras in the Bunny 
Robot are relatively narrow angle (60 degree field of view) the 
information from each camera image is best used from this 
algorithm to estimate small regions of the environment and 
only predict the positions of the features in the next frames.  
The global mapping process still needs to be implemented. 

 

B. Stereo disparity from steerable cameras 
Epipolar geometric correction  (Hartley & Zisserman [11]) 

prior to disparity calculations is commonplace where twin 
cameras are not in perfect alignment. It is normal to verge 
cameras at infinity. Since the Bunny Robot possesses 
steerable cameras this geometric correction becomes pointless, 
as it has to be recalculated each time a camera is moved. An 
alternate correction is possible (Krotkov et al. [12]). Consider 
the case where two steerable cameras are verged, in both the 
X and Y planes, so that a small central portion of each image 
(a fovea) is overlapped with zero disparity (see Fig.7).  

 
 
 
 
 
 
 
 

 
 Fig. 7. (a) Images for the left camera (top-left) and (b) right camera (top-

right). The cameras are verged onto the edge of the tea box. (c) The disparity 
map (bottom) shows the low disparity (dark colour) of the fixated edge from 
preliminary studies using the standard Birchfield and Tomasi (1999) 
algorithm. 

 
In this verged case, the central (foveated) area of the stereo 

image has zero disparity, with a disparity increasing on each 
side of the foveated area (Fig. 7c). Disparity changes similarly 
for points nearer and further away from the cameras. The 
standard relation (for coplanar stereo cameras) between depth 
and disparity is valid no more. Standard disparity detection 
algorithms are also not able to operate optimally. One of the 
reasons is that corresponding points are generally not located 
on the same image row (see for example the different slope of 
the bottom of the tartan pattern in the left and right images). 
This results in highly noisy disparity maps (Fig. 7) when 

calculated using standard stereo correspondence algorithms 
(Birchfield and Tomasi, [13]).  

With verged vision, stereo disparity cannot inform on target 
distance. However, it contains information on the shape of the 
targeted object. This is of special value for the control of 
grasping. Mammalian vision is regularly processing verged 
stereo images (as shown recently by Bhattacharyya et al. [14]), 
but little is know on processing details, except that human 
gaze control is influenced by the muscular cost of 
accommodation of eyes, disparity and proximal cues [15]. 
New convolution-based algorithms will need to be developed 
to exploit the interesting properties of verged vision.  Such 
algorithms also may have the potential to rapidly derive the 
relative distance of objects behind or in front of the verged 
target through crude disparity calculations. The distance to the 
target is then estimated through the vergence angle. Rapid 
calculations of relative depth can be helpful for judging the 
spatial relation between ball, goal and other players, and the 
3D shape of the ball, in preparation for kicking. 

C. Conclusions 
 
The basic Bunny Robot platform has been built and tested. 

New VGA-resolution image stream processing has been 
implemented using VHDL in an on-board FPGA that operates 
in real time at 30 frames per second.  Furthermore scene 
analysis methods are being developed to add-value to the 
platform for navigation, object tracking and target distance 
estimation. These features are being implemented in 300mW 
ARM-based processors consuming less than 1.5w of power in 
total. These functions will be evaluated in competition in 2010. 
The Bunny robot platform design will be released as an open-
source design in the near future. 
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