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Abstract— From 2008 on, the RoboCup competitions are going
to host four distinct humanoid robot soccer leagues: the Standard
Platform League (using the Nao robot of Aldebaran Robotics), the
KidSize League (custom robots smaller than 60cm), the 3D Soccer
Simulation League, and the TeenSize League (custom robots
larger than 100cm). Currently, each of these leagues defines their
own rule framework and research agenda, and standards are
lacking that would facilitate collaborations across the individual
leagues. As a consequence, solutions from one league are difficult
to compare, knowledge is not easily transferred, and significant
amounts of work are duplicated. This binds resources and slows
down the technological and scientific progress. We therefore
propose common control interfaces, and a common simulation
platform across these humanoid robot soccer leagues. We discuss
opportunities and difficulties for such a standardization process
for the different leagues, and suggest candidates for solutions.
We believe that by implementing these standards successful
collaborations will be facilitated, and the overall progress towards
the ultimate goal of the RoboCup project accelerated.

I. INTRODUCTION

The stated goal of the RoboCup initiative is by 2050 having
a team of humanoid robots win the game of soccer against the
human champion of that year [1], [2]. To achieve necessary
steps towards this goal, several different leagues have been part
of RoboCup, each with characteristic hardware and software
platforms, and different research agendas. It took until 2002,
however, to introduce the first league sporting actual humanoid
robots in the RoboCup competitions at Fukuoka, Japan. While
the technology used in these early humanoid soccer games
was certainly very different from the what we will see in the
2050 game, the physical shape of these robots approached the
envisioned robots for the first time. This new league, called
simply Humanoid League (SocHL) has been growing with
each year, and the technology, the rule set, and the quality
of the games improved at a fast pace.

In 2007, another humanoid soccer competition was intro-
duced at the RoboCup competitions in Atlanta, USA. This
league grew out of the Soccer Simulation League (SocSimL)
and consequently, the robots are entirely simulated in software.
The ground work for this league was laid in 2004 already with
the development of a simulator for physical three-dimensional
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multiagent simulations [3] based on the generic components
of the SPARK simulation framework [4], but humanoid robot
models were integrated and used for the first time in 2007.
The RoboCup competitions in 2008 will see the introduction
of a third league using humanoid robots (figure 1 shows a
typical robot of each of the three leagues). This league will
be called the Standard Platform League (SocSPL), since all
of the participating teams are competing with the same type
of hardware, namely the humanoid robot Nao from Aldebaran
Robotics [5]. The focus in this league is on software devel-
opment while still using state of the art robot systems. Like
in the former 4-Legged League, which it will replace, and the
SocSimL, the use of a fixed platform facilitates comparisons
of different software solutions, as well as sharing code that has
proven successful in the competitions. These are likely to be
some of the factors for the rapid progress in the quality of the
games of these leagues, and for the considerable number of
contributions of their participants to the RoboCup Symposium.

Fig. 1.

Typical robots as used in the Humanoid League KidSize (left), the
3D Soccer Simulation League (middle), and the Standard Platform League
(right).

It would be desirable to have similar effects also across dif-
ferent leagues within RoboCup, especially with three leagues
now sharing similar robot morphologies. So far, however, col-
laborations have been rather sparse, and substantial amounts of
work were duplicated. Currently, for instance, basically every
team in the hardware leagues develops their own simulation
environment, often with considerable effort. These resources
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3. Superposition of motions

Left: Motion superposition: By using HMDP two or more motions can be superposed by defining the amplitudes Y; and the phase shift ¢;. The

resulting motion pattern is the sum of both initial patterns. Middle: HMDP commands for different usages of the motion patterns. The PU command can
trigger a motion pattern with end. PY triggers the motion pattern without giving a point in time for the end. The PP command is for testing and starts a motion
pattern immediately without end. Right: Examples for possible implementations of motion patterns. The third example is making use of the superposition

principle.

could be freed if a standard simulation platform was available
that could be used by all of the participants of different
leagues.

As a first step, however, it would be important to develop
standards for robot sensing and control. The harmonic motion
description protocol (HMDP) [6], [7] which we present in
the next section could serve this purpose. After the HMDP
description, we review some of the concepts of the SPARK
simulator in section III, highlighting the features that make it
suitable as a standard simulation platform. Next, the 3D2Real
project is presented in section IV before we close with a
discussion of the problems and opportunities of our proposal
in section V.

II. EXAMPLE: HMDP AS A CONTROL PROTOCOL

In the following we outline the Harmonic Motion Descrip-
tion Protocol (HMDP) [6] that could serve as an interface in
the 3D2Real project. The initial motivation of the HMDP has
been to introduce a flexible communication program on the
microcontrollers of the robots of RoboCup SocHL KidSize
Team JEAP (the team of the JST ERATO Asada project). The
so-called “motion machine” program that takes the role of a
real-time OS on the microcontroller side (tested on an ARM
4 controller) is self-contained in the sense that it does not
require any external libraries. Even a native float type is not
necessary, since an emulated float is provided by the software.
In comparison to present day micro-controller specifications
the demand on RAM memory is relatively high though.

The HMDP specifications are:

o The HMDP includes messages that are submitted from
the PC (acting as master) to the micro-controller (act-
ing as slave) and response messages from the micro-
controller to the PC.

e The protocol allows for the PC side to set the current
time as an integer and also to set the maximal time value

after which the current time on the micro-controller is set
to zero again.

« The protocol defines motion patterns in terms of splines.
In order to allow for periodic motion patterns that can
be repeated an arbitrary number of times the set of base
functions is defined as a set of sines and cosines.

o The protocol activates motion patterns including the in-
formation at what time the motion pattern is activated,
and its amplitude. It also defines which step of the motion
pattern is assigned to what time step of the motion
controller (motion phase assignment).

o The design of the HMDP includes the management of the
motion patterns on the micro-controller side. It is possible
to activate several motion patterns at the same time. The
resulting motion pattern is the superposition (see fig. 2)
of all activated motion patterns (motion superposition
principle).

o The protocol allows to read out values of sensors that are
connected to the micro-controller. In particular, it allows
to read out the the angle of the servo positions at a
particular time step. The message for a sensor request
consists of a tuple of a time at which the sensor value
should be read out and the name of the particular sensor.
As soon as the time for read out is reached, the time value,
the sensor name, and the sensor value are sent from the
micro-controller to the PC.

In addition the HMDP syntax was designed to be relatively
easy to parse. Below we describe the set of messages and the
way parameters and numbers are defined in the protocol.

The HMDP has been used for the Team JEAP robots during
the RoboCup 2007 competitions, and proved to be practically
applicable there (post competition analysis showed that the
unsatisfying results in the competition were caused by other
components.). Figure 3 shows the a part of the design tool
where the standing up motion as it has been used during the
RoboCup has been loaded. The standing up motion proved
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Fig. 3.

Standing up motion designed by a tool to design HMDP motion patterns (screenshot). The screen shows in the top the activated frequencies of sines

and cosine functions that perform the motion intierpolation (dots in purple). Below the resulting interpolated motion functions for selected joints. The time
increases from left to right. The first row depicts the left hip joint in roll direction, the second row the first left knee joint (4G has 2 knee joints) and (half
occluded) the motion of the second left knee joint. Below: The resulting motion for standing up of the robots (8 subsequent stages of the motion).

to be one of the few motions where the exact calibration is
particulary essential. This might be caused by the fact that the
arms of the robots of type 4G are relatively short.

The walking motion is the most prominent example for
motion superposition. In the case of the JEAP team the
walking motion has been achieved by the superposition of
three basic motions: walking on spot, forward-backward, and
turn. (In addition a moving sideward motion would have been
very useful.)

In the next section, we describe SimSpark, the 3D simulator
currently used in the SocSimL, and point out the features that
make it suitable as a possible standard simulation platform.

III. SIMSPARK — A FLEXIBLE SIMULATOR FOR PHYSICAL
MULTIAGENT SIMULATION

The 3D simulator currently used in the SocSimL, called
SimSpark was designed to be extremely flexible. It owes
its flexibility to an underlying application framework called
Zeitgeist which relies on two key concepts. These and other
features of the system are summarized below, based on the
detailed specifications in [8] and [4].

A. Key concepts

The first key concept is the implementation of a variant of
the reflective factory pattern [9] which allows for factory based
instantiation of objects at runtime while storing information
about the creating factory in the object. This can be used to
access class names and supported interfaces once the class
objects are created, and is the basis for the scripting language
interface for Zeitgeist (currently only implemented for Ruby).

The second key concept is the organization of object facto-
ries and created objects in a kind of virtual file system. Every
node in this tree-like structure stores its own path name and
a reference to its parent and child nodes. This way, services
and objects can be easily located during runtime simply by
providing a path expression. The object factories are stored
at well-defined locations in this file system which makes it
possible to instantiate objects of classes that are unknown at
compile time, e.g., through the scripting language interface.
This way, it is easy for instance to add new sensors, actuators,
robot model formats, etc. as plugins to the simulator.

B. Physical simulation

The SimSpark simulator in its current implementation uses
the Open Dynamics Engine (ODE) [10] for physically realistic



dynamics simulations. ODE offers fast rigid body simulations,
collision detection, and supports the use of articulated body
structures. Furthermore, it has integrated joint motors that help
to stabilize the simulation. The most important ODE concepts
are available im SimSpark, encapsulated in classes to fit into
the overall object-oriented design of the simulator.

In practical, complex applications, ODE based simulations
have sometimes turned out to be hard to stabilize. Extensive
knowledge of the numerous ODE parameters is necessary in
order to ensure stability, and it is easy to make mistakes.
Therefore, the use of other freely available physics engines
like for instance Bullet [11] as alternatives will be investigated
in the future.

C. Core simulator

The core of the simulation binds together processes like
timing, event management, and communication with external
processes. It contains the main runloop of the simulator. From
the beginning the design allowed for a customization of the
runloop with replaceable components. Two runloop modes
were built in: a simple, straightfoward loop that would realize
actions sent by the agents as soon as they arrive, and a more
elaborate one using the SPADES middleware [12], designed
for maximum reproducability of distributed simulations.

It turned out that the SPADES based runloop was too
complex and system setup not mature enough to be used
in competition situations. The simple runloop model was,
however, too indeterministic for accurate control, exhibiting
large variations in execution time based on the load of the
server. Therefore, a new timer was implemented that runs
the control loop at 50 Hz, the rendering at 25 Hz, and can
implement different delays for different sensor and actuator
types. Furthermore, it can run in single-threaded or multi-
threaded modes (with the latter still being an experimental
feature though). Some problems remain even with this new
improved runloop though, as we will point out in the discus-
sion in section V.

In order to customize this generic simulation core for
specific simulations, the game or application logic can be
implemented as plugins. Furthermore, descriptions of the
environment and the robot models can be specified using
the RubySceneGraph language (see [4] for details), designed
especially to facilitate hierarchical descriptions. Partial support
for other formats such as RoSiML [13] has been implemented
and can be used as well.

D. Advanced 3D Visualization

SimSpark includes an advanced 3D visualization applica-
tion. It supports internal rendering of the simulated scenes,
as well as streaming of scene description data over the
network for visualization in external monitor applications. It
also supports recording of log files for later (view-independent)
playback, or MPG video files for playback in a standard video
player. In addition to the built-in library Kerosin [14], the
open-source rendering engine OGRE 3D [15] has recently
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Fig. 4. A screen shot of the current soccer simulation setup in SimSpark.

been integrated and allows for state of the art, hi-fidelity
visualization.

E. Network support

Agents as well as external monitors for visualization can
be connected to the simulator via network. TCP and UDP
connections are supported, although only TCP is used at the
moment. The implementation of the network communication
is very modular so that different kinds of protocols can be
supported easily. Furthermore, there is an interface for a so-
called trainer application. They can connect to the server and
make use of a special protocol in order to move objects in
the simulation, set game states, and repeat and evaluate game
scenarios. This is especially useful for debugging and machine
learning applications.

F. Cross-platform support and tools

SimSpark implementations exist for Linux, Windows, and
MacOS X operating systems. Currently, they differ somewhat
in the status of their implementation, but eventually, they
should be unified. In addition to these ports for different
operating systems, the SocSimL. community has contributed an
increasing number of tools to support the simulator use, among
them things like visual editors that allow easy construction of
new robot models with export functions into the supported file
format.

Simulators based on the SPARK framework have been used
in the 3D SocSimL since 2004 and the community of users
has grown to a considerable size. At RoboCup 2007, humanoid
robot models were used for the first time, and while stability
problems were an issue at times due to non-optimal setting
of physics parameters, the overall experience was positive and
encouraging. Figure 4 shows a screen shot of the simulation
as used at the competitions in Atlanta.

The sum of the features described above, with flexibility
being the most important one, make SimSpark generally very
suitable for a wide variety of physical multiagent simulations,
and therefore, as a standard simulation platform across the
different RoboCup soccer humanoid leagues. It is a central



component in the 3D2Real project described in the next
section.

IV. THE 3D2REAL PROJECT

The 3D2Real project [16] was initiated in 2006. The main
idea of this project is to try and use synergy effects from a
collaboration between researchers in the Humanoid and the
Soccer Simulation League (SocSimL). The concept could be
easily extended to the SPL, if this would be seen as useful
by the organizers of this league. The possible collaboration
includes a joint roadmap for the near future of both leagues,
as well as the specification of standards and the development
of tools that can be used in both leagues.

Humanoid robot simulations have been performed in the
RoboCup 3D SocSimL at the 2007 competitions for the first
time. In the HL, on the other hand, the first multi-robot games
have been held, and the great progress in controlling the
robots allows researchers to approach issues of collaboration
and coordination which have been extensively studied in the
SocSimL. In short, both leagues are beginning to come closer
to each other, and joint efforts in the development of tools
and architectures that allow easier transfer of knowledge and
technologies could speed up the mutual progress.

The goal we envision for the 3D2Real project is to have
the finals of the simulation league using real robots by the
year 2009 or 2010. For this ambitious goal several steps are
necessary in the next years to create the required infrastructure
and tools. First, real robot prototypes have to be implemented
as a simulation model in the 3D simulator. According to the
proposed road map, a technical challenge would be held at
RoboCup 2008 to test the ability to use the agent code of
SocSimL participants on a pre-determined real robot.

The HMDP introduced in this work could be used as a
standard for the motion description of the simulated and the
real robots. In the simulation, the agents are connected to the
simulator over the network. This means that they have to send
messages back to the simulator in order to specify, e.g., desired
velocities for the motors. Since many agents connect to the
simulator at once during a game this can lead to a high volume
of network traffic that can cause severe problems for the server.
This in turn, can cause clients to get out of sync with the
server, and their control to be jerky. If the HMDP were used for
the description of motion patterns, longer messages describing
the motions would only have to be sent sporadically when
new patterns have to be set. Actually the transmission of all
occurring patterns before the beginning of the game is possible
and probably the best solution. Certain times in the simulation
when movements should be carried out can be specified, thus
abstracting from real time, which facilitates smooth control .In
the case of the real robots the motion patterns can be stored in
the flash memory of the microcontroller and would readily be
available at every reboot until they are replaced by a different
set of motion patterns.

Figure 5 shows the intended software concept of the
3D2Real project; it depicts also the possible position of the
HMDP within this framework. The HMDP could serve as
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Fig. 5. 3D2Real project: Layout of the control architecture. The hatched
boxes show how the different leagues contribute to the complete system
architecture of the 3D2Real project. The control program for simulation
system and real robot system are identical.

a standard interface for the motion description between the
player software and the robot motor control (either in the
simulation or in the real robots.

In the final section, we will discuss problems and benefits of
a standardization for the different humanoid leagues in more
detail, and give directions for further steps in the project.

V. DISCUSSION AND OUTLOOK

One of the main characteristics of the current SocHL is that
each team develops their own customized hard- and software.
When the league was founded this was simply a necessity
due to the lack of available commercial robot platforms.
The pioneering teams of this league then explored different
design ideas some of which can still be found in the robots
competing in current competitions and have made their way
into commercial products.

Although the SocHL continues to provide innovative robot
design approaches, one point becomes more and more ap-
parent: the fact that hardware as well as software has to
be developed at the same time poses a big obstacle for
newcomers to this league. Even now, the sophistication of
the systems in use require large teams (up to 20 people) in
order to remain competitive. In addition, the lack of standards
makes a comparison of different approaches beyond the raw
competition results quite difficult.

With respect to these considerations the new leagues may
complement the SocHL. Even more so if some interchange-
ability of components (software and hardware) could be guar-
anteed by the organizers (cf. section IV).

The SocSimL and SocSPL would then focus on the software
development while the SocHL could concentrate mainly on
the development of hardware and robot design, making use
of prepared software components in the software-centered
humanoid leagues (SocSimL and SocSPL).

An important issue for the SocSPL will be to find a way to
incorporate the best hardware solutions and control algorithms
into new versions of the standard robot. Naturally, this depends
to a high degree on the manufacturer, but it would be useful
to improve the SocSPL robots in a yearly cycle with solutions
proven successful in the SocHL competitions of the year
before. Equally important would be for the SocSPL robots
to adopt standard protocols like, for instance, the HMDP



presented in section II, that facilitate the transfer of software
to other platforms (in SocHL and SocSimL).

One problem that has made progress in the 3D SocSimL
difficult is the lack of resources for development of the shared
simulation platform. In this league, the situation is such that a
small group of volunteers takes care of the actual maintenance
of the source code that everybody in the league uses for
their research, and at the competitions. These volunteers are
usually students or researchers who have many other duties,
and consequently, the implementation of new features of
the simulator depends entirely on the volunteers’ schedules.
Nevertheless, the community of course expects features to be
ready for the competitions.

A possibility to alleviate this burden for the 3D SocSimL
developers would be if participants of HL and SPL would
provide models of their robots, as well as sensors and actuators
in a standard format that can be used in the 3D SocSimL
platform. As proposed in [16], this could be the XML based
RoSiML [13] format, or maybe an open standard like COL-
LADA [17] (or an extension thereof).

As summarized in section III, many features of SimSpark
make it attractive as a general simulator for the RoboCup
soccer humanoid leagues. Nevertheless, several problems re-
main and need to be addressed to improve usability. These
are namely: improved user and developer documentation,
speed optimizations through consistent reference caching in
Zeitgeist, and correction of the physics parameters for better
stability of the dynamics in the simulation. Here the developers
can learn from other open source simulators like USARSim
[18]. In addition, problems with synchronization of agent
programs with the server can occur if the server is under heavy
load (cf. section IV). Implementing the HMDP for control of
the robots in the simulator could solve this problem.

Besides the HMDP as a possible standard for robot control,
other standards should be considered and evaluated. The OMG
for instance has recently accepted the Robotic Technology
Component Specification [19] and is currently working on
the Robotic Localization Service API [20]. The Player/Stage
project [21] also defines a language for robot control, and more
candidates can be found.

Some of the next steps to advance the project would be
to implement the HMDP in SimSpark, and specify a model
of a real humanoid robot, including appropriate models for
sensors and actuators. These are important preparations for
the technical challenge in the SocSimL in 2008 as proposed
in the 3D2Real roadmap.

Furthermore, it would be interesting to host demonstration
games between robots of the SocHL and the SPL in order to
assess the current levels of performance and identify issues
for closer collaboration.

Finally, since the RoboCup is a free project, standards
cannot be enforced and are if at all deliberately accepted.
However, it might be worthwile to create incentives for confor-
mance with proposed standards for the benefit of collaboration
across leagues and faster progress towards the 2050 goal.
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